

Water Determination using Karl Fischer Coulometric Titration with Oven

Initial Parameters:

Reaction Cell: 75mL of Coulomat AG-oven solution in the KFC vessel

Oven attachments: Oven connected to the KFC vessel¹

Method: KFV_C* -oven

Balance: Analytical balance with readability of 0.0001g

Cell type: Without diaphragm

Solubility: Samples may be soluble in methanol

1. Scope:

The Karl Fischer (KF) Titrator is exclusively used for the quantification of water. In a coulometric KF titration, the iodine is generated from the coulometric Karl-Fisher (KFC) solution. Water in a water or air sensitive solid is determined by heating a sample in an oven at 150 °C to evaporate water which is conveyed to a coulometric Karl Fisher titrator which measures the amount of water evolved. As water is released by the sample it is carried by a constant flow of dry air to the coulometric Karl-Fisher titration cell. As the gas bubbles through the Karl-Fisher solution the water reacts with the reagents to consume I_2 . The titrator responds to the loss of I_2 by passing current through the anode to generate more I_2 from the I present in the reagents. An excess of iodine indicates the endpoint of the titration. As the amount of water titrated is proportional to the total current (current x time), the water content is determined from the current required for the titration.

2. KF Instrument Setup

- a. All glassware must be dry and free of water and contamination.
- b. Place 75 mL of the Coulomat AG-oven solution into the KFC vessel¹.
- c. Power up the oven.
 - i. Select the OK button.
 - ii. Set the temperature.
 - 1. T1: Temperature (50°C is standard for heat sensitive material)

- 2. T2: final temperature (150°C and over is recommended)
- iii. Set up the flow (50mL/min is standard for many applications)
- iv. Set the gas type: air.
- v. Set the flow source: pump.
- d. Startup Tiamo software, wait till all modules are discovered.
- e. Select Workplace icon. Load the method and sample details (i.e., Hydranol 1)

3. Sampling Handling and Analysis Procedure:

- a. Blank Determination (amount of water in a blank sample vial)
 - i. Crimp four empty sample vials.
 - 1. Three vials will be your blanks.
 - 2. One vial will be for conditioning the system.

a. This vial may have to be replaced if initial conditioning values are not achieved.

- ii. Place the conditioning vial into the oven².
- iii. Place the needle into the vial³.
 - 1. Press the needle holder lever.
 - 2. Push down on the needle holder.
 - 3. Peirce the septum with the oven needle.
- iv. From the Workplace window, select Start.
 - 1. Wait until Conditioning reads 'Ok' at < 8ug/min.
 - 2. Wait till the oven temperature and flow values are achieved.
- v. From the Workplace window, select Start.
 - 1. 10 second countdown will commence.
- vi. Replace the conditioning vial with a blank vial in the oven.

1. Caution the vial is VERY HOT.

- 2. Place the needle into the vial.
- vii. Once the reaction/titration is completed
 - 1. Return the conditioning vial to the oven.
 - 2. Peirce the septum with the oven needle.
 - 3. Wait until Conditioning reads 'Ok' at < 8ug/min.
- viii. Repeat (v to vii) with next two blank vials
 - 1. Blank samples should provide values below the highest expected water concentrations.
 - 2. RSD <u><</u>5%
 - 3. Enter an average of the three values into the Blank value in the Tiamo
 - a. Database Window
 - i. Configuration Window

1. Blank Value

- 4. Repeat till acceptable RSD has been achieved.
- b. Sample Determination (amount of water in a sample vial)
 - i. Crimp an empty vial for conditioning the system.

a. This vial may have to be replaced if initial conditioning values are not achieved.

- ii. Weigh approximately 0.02-0.08 grams of sample into a vial and crimp⁴.
- iii. Place the conditioning vial into the oven.
- iv. Place the needle into the vial³.
- v. From the Workplace window, select Start.
 - 1. Wait until Conditioning reads 'Ok' at < 8ug/min.
 - 2. Wait till the oven temperature and flow values are achieved.
- vi. From the Workplace window, select Start.
 - 1. 10 second countdown will commence.
- vii. Replace the conditioning vial with a sample vial in the oven.
 - 1. <u>Caution the vial is VERY HOT.</u>
 - 2. Place the needle into the vial.
- viii. Once the reaction/titration is completed
 - 1. Return the conditioning vial to the oven.
 - 2. Peirce the septum with the oven needle.
 - 3. Wait until Conditioning reads 'Ok' at < 8ug/min.
- ix. Repeat (ii to viii) with the sample vials at least two additional times.
 - 1. RSD <u><</u>5%
 - 2. Repeat till acceptable RSD has been achieved.
- c. KFC Reaction Vessel Concerns
 - i. If moisture in the air is a concern, all samples, blanks, and conditioning vials must be prepared in a glove box (inert gas filled).
 - 1. Dry the vials in the oven for at least two hours at 120°C.
 - 2. After the vials have been dried remove them from the oven *Caution the vial(s) is VERY HOT*, place them in a desiccator.
 - a. Leave vials in a desiccator for 10-15 minutes before using.
 - b. Use vials within the next 4 hours.
 - *3. Take the sample into the glove box.*
 - 4. Place a 'dry' vial onto the balance and use as above.
 - ii. If the colour of the reaction vessel solution becomes too dark
 - 1. Replace the entire solution.
 - 2. Wait till Conditioning reads 'Ok' at < 8ug/min.
 - iii. If the electrode reads ≤ 0.2 ug/min.
 - 1. Replace the entire reaction vessel solution.

2. Wait till Conditioning reads 'Ok' at at < 8ug/min.

4. Calculations in ug water/ sample g

a. The instrument will calculate the water concentration in ppm, but the following calculation can be done manually if necessary.

ppm water = <u>µg water - µg water from the averaged blanks</u> sample weight, g

5. Appendix

¹KFC-Oven Setup:

²KFC-Oven Vial Setup

³KFC-Oven Needle Introduction

⁴KFC-Oven Sample size table

Water Content	Sample Size
<u><</u> 40%	10-50mg
10%	20-100mg
1%	100-350mg
0.1%	200-1000mg

*The TRACES Manager will provide full details during hands-on training.