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The process by which multiple items within an object grouping are rapidly summarized along a given
visual dimension into a single mean value (i.e., perceptual averaging) has increasingly been shown to
interact dynamically with visual working memory (VWM). Commonly, this interaction is studied with
respect to the influence of perceptual averaging over VWM, but it is also the case that VWM can sup-
port perceptual averaging. Here, we argue that, in the presence of memory-matching elements, VWM
exerts an obligatory influence over perceptual averaging even when it is detrimental to do so. Over four
experiments, we tested our hypothesis by having individuals perform a mean orientation estimation task
while concurrently maintaining a colored object in VWM. We anticipated that mean orientation reports
would be attracted to the local mean of memory-matching items if such items are prioritized in percep-
tual average judgments. This was indeed the case as we observed a persistent bias in mean orientation
judgments toward the subset mean of items matching the VWM item color, despite color being entirely
irrelevant to the mean orientation task. Our results thus highlight a goal-invariant influence of VWM
over perceptual averaging, which we attribute to amplification through memory-driven selection.

Public Significance Statement
Current understanding of the interaction between perceptual averaging and visual working memory
(VWM) has largely centered on the influence of the former over the latter, with much less consider-
ation of a potential bidirectional relationship between these two systems. In this study, we show that
not only does VWM alter perceptual averaging judgments but that it also does so automatically
(i.e., even when it is costly to do so). More broadly, this work provides confirmatory support to the
idea that the amplification of items within object ensembles is set by an underlying priority map,
which guides selective attention on the basis of physical salience, top-down goals, emotional va-
lence, and reward history.

Keywords: ensemble statistics, visual working memory, feature-based attention, mean orientation
judgments

Through the process of perceptual averaging, the visual system
rapidly summarizes characteristics of object groupings into mean
values that represent the group across the visual hierarchy, ranging
from low-level visual features—for example, mean size (Ariely,

2001; Chong & Treisman, 2003), hue (Webster et al., 2014), and
orientation (e.g., Alvarez & Oliva, 2009; Dakin & Watt, 1997)—
to more complex visual properties, such as the mean facial expres-
sion of a crowd (e.g., Haberman et al., 2009; Haberman & Whit-
ney, 2007, 2009). This process of perceptual averaging provides
adaptive value in its own right, but there has also been a growing
appreciation for how it may interact with and inform other cogni-
tive systems, with a particular focus on visual working memory
(VWM). Most notably, Brady and Alvarez (2011) demonstrated
that when VWM arrays are segregable by a grouping feature (i.e.,
color), individuals’ single-item memory reports incorporate
higher-level information about the item’s associated set. That is,
when individuals were asked to report the size of memorized
circles, size estimations were systematically biased in accordance
with the mean size of a subset of items matching the probe item’s
color (Brady & Alvarez, 2011; see also Lowe et al., 2018). Cor-
roborating this finding, subsequent works have since shown simi-
lar results on the basis of location (Lew & Vul, 2015) and other
Gestalt grouping principles (Corbett, 2017). Furthermore, even
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when individual items are not readily separated into multiple clus-
ters, information about the mean of the entire set has nonetheless
been shown to influence VWM reports (e.g., Corbin & Crawford,
2018; Dubé et al., 2014; Griffiths et al., 2018; Sama et al., 2019, in
press; Utochkin & Brady, 2020). Accounting for this pervasive
influence of perceptual averaging on single-item VWM represen-
tations, two complementary functions have been hypothesized.
First, by anchoring similar items to a single value (i.e., the subset
mean), individuals can mitigate capacity limitations at the storage
level (e.g., Alvarez, 2011; Son et al., 2020). Second, when faced
with uncertainty, the set mean can be used at the decision level to
approximate the identity of individual items (e.g., Dubé et al.,
2014; Honig et al., 2020; Utochkin & Brady, 2020). As such, per-
ceptual averaging can be viewed as a compensatory mechanism
that supports VWM by reducing load and minimizing the effects
of forgetting.
However, while the primary focus of works in this area to date

has been concerned with the influence of perceptual averaging on
the representation of individual items in VWM, there is good rea-
son to believe that the inverse also holds true—namely, that VWM
can influence perceptual averaging. For example, in much the
same way that competition over shared cortical representation can
shift the perception of an object’s features toward (e.g., Teng &
Kravitz, 2019) or away (e.g., Scocchia et al., 2013) from informa-
tion of the same dimension in VWM, the perception of average
motion is similarly shifted away from dimension-matching infor-
mation held in VWM (Kang et al., 2011). Moreover, when items
are segregable on a given dimension, individuals can use atten-
tional templates stored in VWM (Berggren & Eimer, 2018; Bun-
desen, 1990; Carlisle & Woodman, 2011; Woodman & Arita,
2011) to improve the averaging of items possessing a task-relevant
feature (Brand et al., 2012), despite previous evidence to the con-
trary (i.e., Chong & Treisman, 2005b). As this latter finding sug-
gests, then, VWM can be used deliberately to prioritize the
averaging of prespecified items through memory-driven selection.
What is particularly interesting about this finding, though, is that
this form of attentional guidance can also occur incidentally as
simply maintaining a feature value in VWM can bias attention to-
ward perceptually similar information in the visual field (e.g.,
Carlisle & Woodman, 2011; Hollingworth et al., 2013; Kumar et
al., 2009; Olivers et al., 2006; Soto et al., 2005; Sun et al., 2015).
This begs the question, then, does memory-driven selection auto-
matically alter the contribution of individual items to perceptual
averages even when it is costly to do so (i.e., when all items are
equally relevant to one’s task)?
Whether or not memory-driven selection can automatically bias

the extraction of perceptual averages critically depends on whether
the weighting of individual items is commensurate to the distribu-
tion of attention across the set, which indeed there is mounting evi-
dence to suggest. Support in this regard was first provided by
Chong and Treisman (2005a), who showed that broadly distribut-
ing attention across a set of items produces greater accuracy for
mean-size recognition judgements relative to conditions where
attention is localized to specific items or locations at encoding.
Extending from this finding, de Fockert and Marchant (2008) fur-
ther showed that individually selected items (in this case, for a
concurrent localization task) produce an undue influence on per-
ceptual averaging, with more recent work confirming that this

effect is at least partially owed to increased weighting of selected
items at the time of encoding (Choi & Chong, 2020). Similarly,
using a multiple-object tracking procedure with faces, Chen and
Zhou (2018) found that individuals were more likely to endorse
the mean identity of the tracked faces as being a member of the
tracked set compared to the mean identity of the untracked faces
or the set as a whole, suggesting that even the implicit influence of
perceptual averaging on single-item recognition is biased in favor
of attended items.

Still, although the above findings provide strong support to sug-
gest that perceptual averaging is biased in accordance with the
allocation of attention across set members, the described works
largely rely on tasks that explicitly require specific items be
attended over others (though to a lesser extent with respect to
Chong & Treisman, 2005a), whereas to establish that such effects
occur automatically, such a pattern of results ideally would be
observable in the absence of direct instruction. On this matter,
Kanaya et al. (2018) recently demonstrated that the effect of atten-
tional weighting on perceptual averaging is observable for more
basic tasks. Using a procedure where individuals simply had to
compare the mean size or temporal frequency of circular disks to a
test disk, participants were shown to reliably overestimate the
mean size and temporal frequency of the disks, particularly when
the set size was large or interstimulus variability was high.
Accounting for this finding, Kanaya et al. (2018) put forth an
amplification hypothesis of perceptual averaging, stating that
physically salient items (in their case, the largest- or highest-fre-
quency items) are more heavily weighted than less salient items in
the determination of such summary statistics. More specifically,
this hypothesis rests on the idea that perceptual averaging occurs
via the sampling of just a subset of items (e.g., Allik et al., 2013;
Myczek & Simons, 2008) approximately equal to the square root
of all items (e.g., Dakin, 2001; Whitney & Yamanashi Leib,
2018), rather than through exhaustive sampling of all items in a
set, as others have argued (e.g., Ariely, 2001; Chong & Treisman,
2005b; Chong et al., 2008). Physically salient items, which attract
attention, are argued to be preferentially included in the sample
with proportionally greater representation as the set size is
increased, with set variability working to increase the relative sali-
ency of individual items and thus strengthen the amplification
effect.

More recently, Iakovlev and Utochkin (2020) extended this
work and offered further clarity with respect to whether this atten-
tional amplification is based solely on a subset of physically sa-
lient items. Much like the study by Kanaya et al. (2018), physical
salience was defined according to the relative size of set members;
however, the items themselves were oriented arrows, to which par-
ticipants were asked to determine the mean orientation. By making
the biasing dimension independent of the probed dimension, the
authors were able to manipulate the mean of the largest items to be
oriented counterclockwise from the global mean, clockwise from
the global mean, or equal to the global mean. Additionally, rather
than relying on forced-choice judgments, participants were asked to
estimate the mean through a continuous-report procedure. These
methodological differences allowed for greater confidence in the
effect of physical salience on perceptual averaging in that differen-
ces in the estimation of the mean could be directly mapped to
changes in the assignment of the large arrows. Overall, the observed
results were consistent with the amplification hypothesis;
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estimations were biased toward the mean of the largest set items
and more or less variable depending on the range of orientations
used for the large set items. Of note, though, the effects were less
than what would be expected had individuals relied solely on the
most salient items in the displays, highlighting that while salient
items received greater weighting, less salient items nonetheless con-
tributed to the perceived perceptual average.
Last, while both Kanaya et al. (2018) and Iakovlev and Utoch-

kin (2020) demonstrated that physically salient items are automati-
cally favored in the determination of perceptual averages, it is
worth noting that the amplification effect is not limited to such
stimuli. For instance, Dodgson and Raymond (2020) showed that
individuals overvalue the contribution of items possessing a fea-
ture (i.e., color) previously associated with a reward when making
mean size estimations. Similarly, when making judgments of
mean expression, individuals’ reports are biased toward emotion-
ally salient faces (Goldenberg et al., 2020). Taken together, it can
be argued that the weighting of items contributing to perceptual
averages is set by an underlying priority map, which distributes
attentional resources on the basis of bottom-up salience, top-down
goals, reward history, and emotional valence, akin to what is
observed in the case of visual search (e.g., Awh et al., 2012;
Wolfe, 2007).
Returning, then, to the matter of whether memory-driven selec-

tion automatically influences perceptual averaging, we can confi-
dently assert that if VWM does indeed bias attention toward
feature-matching elements, then this will have a measurable
impact on the extraction of summary statistics. We thus sought to
demonstrate this in the present study. For our general method, we
used a modified version of a dual-task paradigm typically used to
study memory-driven selection (e.g., Kumar et al., 2009; Olivers
et al., 2006; Soto et al., 2005; Sun et al., 2015) but replaced the
visual search task that is commonly employed with a mean orien-
tation estimation task that incorporated design elements used by
Iakovlev and Utochkin (2020) and Dodgson and Raymond (2020).
To start each trial, individuals were asked to memorize a colored
object to be tested through change detection at the end of the
trial. Between the time of study and test, individuals were shown
displays of oriented bars containing two intermixed subsets of
elements grouped by color and were then asked to report the
mean orientation of all presented items. Critically, the color of
the item maintained in VWM could match one of the two subsets
(oriented either counterclockwise or clockwise from the global
mean of the entire set). Subscribing to the amplification hypothe-
sis and other related works, our primary hypothesis was that
items matching a color maintained in VWM would receive
greater levels of attention and thus be overweighted in estima-
tions of the perceptual average. As such, we predicted that esti-
mation errors would be biased in a counterclockwise direction
when the local mean of elements sharing the color of the item
held in VWM was oriented counterclockwise from the global
mean. Similarly, errors would be biased in a clockwise direction
when the local mean of such color-matching elements was clock-
wise from the global mean.

Experiment 1

The purpose of Experiment 1 was to directly address our primary
research question: Does memory-driven selection obligatorily bias

the extraction of perceptual averages? As described above, this
entailed having participants perform mean orientation estimations
while simultaneously maintaining a colored object in VWM that
could match the color of a subset of items. We predicted that, through
the implicit biasing of feature-based attention, global mean orienta-
tion estimates would be attracted toward the local mean of a subset
of items matching the color of the object held in VWM.

Method

Participants

Twenty-five undergraduates (19 female; M = 20.8 years, SD =
1.9) from the University of Toronto participated in this experiment
for course credit. We determined through an a priori power analy-
sis that this sample size would yield a .95 probability of detecting
a difference between clockwise and counterclockwise conditions
at an alpha level of .05 if a true effect were present. We did so
using G*Power (Faul et al., 2009) and assuming an effect size of
dz = .76, which corresponds to the average effect size in the study
by de Fockert and Marchant (2008) when contrasting mean size
recognition accuracy for targets presented alongside foils congru-
ent with an attended set member versus targets presented alongside
foils incongruent with an attended set member. Notably, this sam-
ple size was approximately equal to that used by Iakovlev and
Utochkin (2020), who employed a similar orientation estimation
task to the one used in the current study. We use this sample size
for all proceeding experiments and additionally include Bayesian
and cross-experiment analyses where key conclusions depend on
acceptance of the null hypothesis to ensure that our findings are
not due to insufficient power. All participants provided written
informed consent and reported to have normal color vision and
normal or corrected-to-normal visual acuity.

Stimuli, Apparatus, and Procedure

Participants were seated 57 cm from a 19-in. CRT monitor (re-
solution: 1,280 3 1,024 pixels; refresh rate: 60 Hz). A mounted
chin rest was used to stabilize head position. The experiment was
carried out using the Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997) in MATLAB. All stimuli were displayed against a
black background.

A schematic of the task is shown in Figure 1. Each trial began
with fixation on a white central cross (.5° 3 .5°) for 800–1,200
ms. A colored, irregularly shaped 2D object was then presented
centrally for 500 ms. Based on stimuli used by Cohen and Singh
(2007), these objects were constructed by defining 12 evenly
spaced angles from 1–360° and then introducing a random jitter
between �5° and 5° to each. These angles were then used to create
the object’s vertices at randomly selected distances subtending
1.1° to 2.2° from center. Six colors were used for these objects
(i.e., orange, gold, teal, blue, violet, and magenta), chosen from
evenly spaced locations around a 360° color wheel (centered at
L* = 54, a* = 22, b* = 11). Participants were asked to memorize
both the form and color of the presented object while it was on the
screen.

After studying the object, participants were shown a central fix-
ation cross for 1,000 ms. An orientation display of 12 colored bars
(item size: 1.5°3 .5°) was then shown for 250 ms within an imag-
inary 17° 3 17° square, with all bars separated by a minimum
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center-to-center distance of 2.2°. This display consisted of two
equally numbered subsets of bars, the colors of which were
defined by high-contrast color pairs from the six colors used in the
VWM task (i.e., orange/blue, gold/violet, and teal/magenta). The
locations of all items were randomly assigned within the prede-
fined spatial constraints. In each case, the mean of one subset was
oriented 15° counterclockwise to the global mean orientation of
the entire set, while the other was oriented 15° clockwise to the
global mean. The orientations of individual items within each sub-
set of bars varied by a standard deviation of 8–12°. For one third
of the trials, the color of the studied item from the VWM task
matched the color of the counterclockwise-oriented subset (CCW
condition); for another third of trials, the studied item matched the
color of the clockwise-oriented subset (CW condition); and for the
remaining third of trials, neither of the subsets matched the color of
the VWM study item (control condition). Within each display condi-
tion, each of the six colors served as the color of the VWM study
item, CCW subset, and CW subset an equal number of times, and
each color pair used for the orientation displays occurred with equal
frequency across conditions. Further, six predetermined global means
ranging from 15°–165° in intervals of 30° were used for the orienta-
tion displays, rather than allowing the overall mean to vary randomly
from 1–180°, to ensure that the contents of the displays would be
matched across conditions.
The orientation display was followed by 900 ms of central fixa-

tion. A gray bar then appeared at the center of the screen at a ran-
dom orientation. Using the mouse cursor, participants rotated the
bar to estimate the mean orientation of the orientation display and
then clicked the left mouse button to lock in their answer. Partici-
pants were instructed to be as accurate as possible and to base their
judgments on all of the bars that were present in the display. There
was no time limit on the response.
Immediately following the mean orientation judgment, memory

for the studied item was tested. Participants were shown another
2D object and were asked to indicate if it was identical to or differ-
ent from the object studied at the start of the trial by making an “s”
(same) or “d” (different) key press, respectively. For different tri-
als, either the color or the form could differ from the studied object

(but never both at the same time), with each occurring with equal
frequency. When the color of the object changed, one of the
remaining colors was randomly selected for the object, with the
exception of the studied color’s high-contrast counterpart, which
was never chosen. When the form of the object changed, a new
object was generated following the same procedure used to create
the study items. Participants were allotted up to 6 s to respond to
the test item, with accuracy being emphasized over speed. Once a
response was registered or the time limit was reached, the trial
ended and was followed by a 500-ms blank intertrial interval. The
task consisted of six blocks separated by short breaks, with each
block comprised of 36 trials containing an equal number of trials
from each of the three conditions. Prior to starting the task, partici-
pants were given 18 practice trials (six trials from each condition)
to familiarize them with the VWM and mean orientation estima-
tion tasks.

Analysis

Accuracy was used to gauge performance in the VWM task and
was measured as the proportion of correct responses to the test
item. Analysis of mean orientation judgments was limited to trials
in which participants correctly responded to the VWM test item.
This was to ensure that participants had an accurate representation
of the study idem in VWM while attending the orientation display.
We analyzed response errors, measured as the difference between
the participant’s estimation of the global mean and the actual
mean, with errors ranging from �90° to 90°. For each participant,
we scaled the errors to a 360° circular space and estimated circular
standard deviation (CSD) and clockwise/counterclockwise bias
(i.e., central tendency) parameters of the error distributions corre-
sponding to each of the three conditions (see Bays et al., 2009;
code available at http://www.bayslab.com). Last, we employed
within-subject one-way analyses of variance (ANOVAs) to com-
pare performance across the three display types (i.e., CW, CCW,
control) for our measures of VWM accuracy, CSD, and bias.
Moreover, following a similar analysis used by Iakovlev and
Utochkin (2020), we compared the average difference on the bias
parameter between our control and memory-matching item

Figure 1
Schematic of the Task Used in Experiment 1

Note. Participants studied the color and form of an irregular 2D object. A display of 12 oriented bars was then
shown, consisting of two subsets oriented counterclockwise and clockwise from the global mean orientation,
respectively. Depending on the condition, the color of one of these subsets could match the color of the studied
object. Participants then reported the mean orientation of the bars by rotating a gray bar presented at the center
of the screen. Last, participants judged whether a newly presented object matched the object studied at the start
of the trial. Shown is an example of a trial with a clockwise feature-matching subset in the orientation display
and a color change at visual working memory (VWM) test. ISI = interstimulus interval; ITI = intertrial interval.
See the online article for the color version of this figure.
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displays (reversing the signs of the difference scores for the CCW
condition) to the value that would be expected if individuals were
to solely base their mean orientation judgments on the memory-
matching subset of items (i.e., 15°). For better interpretability, we
report the estimated parameters in the original 180° orientation
space. Effect sizes are provided alongside the results of each
ANOVA using partial eta squared (hp

2), as well as Cohen’s dz and
ds for follow-up within-subject and between-subjects comparisons,
respectively (Lakens, 2013). Data for all experiments are openly
available online (https://osf.io/u45h7/).

Results and Discussion

Means for the CW, CCW, and control conditions for each of
our dependent measures (i.e., VWM accuracy, CSD, and bias) are
presented in Figure 2. As is shown, performance on the VWM
task significantly differed by display type, F(2, 48) = 4.25, p =
.020, hp

2 = .15. Specifically, the proportion of correct responses
was lower in the control condition relative to the CCW condition,
t(24) = 2.55, p = .017, dz = .51, and the CW condition, t(24) =
2.39, p = .025, dz = .48, while VWM performance was equivalent
for CCW and CW conditions, t(24) = .54, p = .596, dz = .11. With
respect to the mean orientation task, there was a significant effect
of display type on CSD, F(2, 48) = 3.62, p = .034, hp

2 = .13. Fur-
ther inspection of this effect revealed that there was greater var-
iance in the error distribution for the control condition relative to
the CW condition, t(24) = 2.46, p = .022, dz = .49. There was no
significant difference in variance for the control condition relative
to the CCW condition, t(24) = 1.74, p = .094, dz = .35, nor was
there a difference between the CCW and CW conditions, t(24) =
.58, p = .570, dz = .12. Critically, there was a significant effect of
display type on the bias parameter, F(2, 48) = 14.80, p = , .001,
hp
2 = .38. Relative to the control condition, both the CCW, t(24) =

4.37, p , .001, dz = .87, and CW, t(24) = 2.92, p = .007, dz = .58,

conditions exhibited bias in the direction of the memory-matching
subset mean (i.e., counterclockwise and clockwise bias, respec-
tively), and the difference between these two conditions was also
significant, t(24) = 4.29, p , .001, dz = .86. Last, while these
results do suggest that estimates of mean orientation for the entire
set were attracted toward the local mean of individual items corre-
sponding to the color of the item held in VWM, the average mag-
nitude of the memory-matching item bias relative to the control
condition (M = 3.08°) was significantly smaller than what would
be expected had such judgments been based solely on the mem-
ory-matching subset, t(24) = 16.60, p, .001, dz = 3.32.

Overall, these results provide strong evidence to support our
prediction that memory-driven selection can alter perceptual aver-
aging independent of intention. Considering that the guidance of
attention toward memory-matching elements is the likely source
of this bias, these results align well with the amplification hypothe-
sis of perceptual averaging (Kanaya et al., 2018), which argues
that perceptual averaging occurs through a process of nonrandom
sampling that prioritizes high-salience items. Moreover, with
respect to the fate of the less salient (i.e., the nonmatching items),
our results are consistent with Iakovlev and Utochkin (2020) in
that we too demonstrate that while salient items overcontribute to
estimations of the mean, such judgments are not based solely on
these items. Indeed, while we cannot directly speak to whether
individuals employed exhaustive sampling of all presented items
(e.g., Ariely, 2001; Chong & Treisman, 2005b; Chong et al.,
2008) or instead relied on just a partial sample of the items (e.g.,
Allik et al., 2013; Dakin, 2001; Myczek & Simons, 2008; Whit-
ney & Yamanashi Leib, 2018), it is worth noting that to achieve
the observed bias of approximately 3° using the latter strategy,
on average, individuals would have needed to sample memory-
matching items over nonmatching items at a rate of 3 to 2 (i.e.,
sampling three items from a distribution centered at 15° and two
items from a distribution centered at �15° would yield an aver-
age value of 3°).

Figure 2
Results of Experiment 1

Note. N = 25. Dependent measures include accuracy for the visual working memory (VWM) task (left), as well as circular standard deviation (CSD;
center) and bias (right) parameters of the error distributions for estimations of mean orientation. Error bars represent 95% confidence intervals for
within-subject designs (Cousineau, 2005). CCW = counterclockwise condition; CW = clockwise condition.
* p , .05. ** p , .01. *** p , .001.
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Experiment 2

In Experiment 1, we demonstrated that estimations of mean
orientation are biased by the presence of elements that shared a
common feature with an item maintained in VWM, supporting
the notion that memory-driven selection exerts an obligatory
influence over perceptual averaging. Still, it is nonetheless possi-
ble that our findings could be attributable to perceptual priming
rather than top-down alterations of an underlying priority map
by the contents of VWM. In other words, simply being exposed
to the color of one of the subsets prior to the presentation of the
orientation display may be sufficient to alter one’s perceptual
sensitivity to such items when subsequently encountered (Belo-
polsky et al., 2010; Maljkovic & Nakayama, 1994; Wiggs &
Martin, 1998). To test this account, we conducted a second
experiment in which the color of the studied item was never
tested and thus did not need to be maintained in VWM. If we
continued to observe an estimation bias in favor of items match-
ing the color of the studied item, then this would indicate that
our initial finding is better accounted for by effects related to
one’s perceptual history rather than the explicit maintenance of a
feature in VWM.

Method

Participants

Twenty-six undergraduates from the University of Toronto par-
ticipated in this experiment for course credit; however, one partici-
pant was excluded because of poor performance on the VWM task
(i.e., overall accuracy , 3 standard deviations below the group
mean). The final sample thus consisted of 25 participants (18
female; M = 19.9 years, SD = 1.5). All participants provided writ-
ten informed consent and reported to have normal color vision and
normal or corrected-to-normal visual acuity.

Stimuli and Procedure

The task used in Experiment 2 was identical to that of Experi-
ment 1, with one exception. That is, for the VWM component of
the task, the form, but not the color, of the studied object could
change at the time of the test display. Thus, while the color of the
studied object still matched the color of the CCW subset on one
third of the trials and the CW subset on another third of the trials,
it was no longer necessary to remember the color of the studied
object. Participants were explicitly informed that only the form of
the object could change at test.

Results and Discussion

Means for all three display types (i.e., the CW, CCW, and con-
trol conditions) are illustrated in Figure 3 for each of our depend-
ent measures. In contrast to the results of Experiment 1, there was
no difference in accuracy for the VWM task across display types,
F(2, 48) = .46, p = .634, hp

2 = .02. Further, the error distributions
for the orientation task did not differ across condition for either
the CSD parameter, F(2, 48) = 1.30, p = .282, hp

2 = .05, or the bias
parameter, F(2, 48) = 2.04, p = .141, hp

2 = .08. However, because
our conclusions here rest on the acceptance of the null hypothesis,
we additionally examined the Bayes factor (BF) associated with
the effect of display type on our bias parameter. From this analy-
sis, we found that support for the null was positive but inconclu-
sive (BF01 = 1.78). We thus performed a cross-experiment
ANOVA on the bias parameter, which included a between-sub-
jects factor of experiment along with our data from Experiment 1.
In doing so, we found an overall effect of display type, F(2, 96) =
16.32, p , .001, hp

2 = .25, that critically interacted with the factor
of experiment, F(2, 96) = 8.21, p , .001, hp

2 = .15. Follow-up
comparisons showed that the bias toward the memory-matching
subset was significantly larger in Experiment 1 relative to the cur-
rent experiment for both the CCW condition, t(48) = 2.63, p =

Figure 3
Results of Experiment 2

Note. N = 25. Dependent measures include accuracy for the visual working memory (VWM) task (left), as well as circular standard deviation (CSD;
center) and bias (right) parameters of the error distributions for estimations of mean orientation. Error bars represent 95% confidence intervals for
within-subject designs (Cousineau, 2005). CCW = counterclockwise condition; CW = clockwise condition.
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.012, ds = .74, and the CW condition, t(48) = 2.69, p = .010, ds =

.76, while there was no difference for the control condition,
t(48) = .69, p = .495, ds = .19.
From these results, we can conclude that the observed effect of

the VWM task on mean orientation estimations in Experiment 1
was not due to perceptual priming since this effect is significantly
attenuated, if not completely abolished, when color did not need to
be actively stored in VWM, but participants are nevertheless
exposed to the color of one of the subsets prior to encountering the
orientation display. These results thus strengthen our conclusion
that the observed misestimations in the mean orientation task in
Experiment 1 were driven by the inadvertent prioritization of items
following memory-driven selection. From a broader perspective,
the absence of a memory-matching bias in the current experiment
also aligns well with a proposal that the guidance of attention crit-
ically depends on the nature of the maintained feature representa-
tion. That is, while VWM is thought to guide attention when
feature values are actively maintained for immediate use, features
that are only encoded incidentally, or not required for immediate
use, are thought to be maintained only in an accessory state that
does not interact with attentional selection (see Olivers et al.,
2011).

Experiment 3

Although the results of Experiment 2 demonstrate that the
observed bias on estimates of mean orientation in Experiment 1
was not the result of perceptual priming, it is important to
acknowledge that factors other than the automatic guidance of
attention toward memory-matching items may have contributed to
our finding. Most notably, it is possible that the observed bias sim-
ply reflects a strategic attempt to improve performance on the
VWM task itself. That is, by strategically devoting more attention
to memory-matching elements, individuals would be better able to
detect a change in the item actively maintained in VWM when
tested at the end of the trial. Indeed, this explanation is consistent
with the higher accuracy observed for the CCW and CW condi-
tions relative to the control condition in the VWM task of Experi-
ment 1. We thus sought to examine this possibility in Experiment
3 by manipulating the duration of orientation displays to be either
brief (i.e., 150 ms) or long (i.e., 500 ms). In doing so, we reasoned
that voluntary attentional allocation would be more difficult for
brief displays given that strategic attentional allocation is less via-
ble for short presentation durations. In the case of VWM tasks, for
example, even if it is known that one of two items is more likely
to be probed at test than the other, individuals are unable to strate-
gically prioritize the encoding of the likely test item when the ex-
posure duration is less than 200 ms (but can do so for longer
durations; Bays et al., 2011). With respect to perceptual averaging,
manipulations of display duration have similarly been effective for
understanding effects related to processing time at encoding (e.g.,
Li et al., 2016; Whiting & Oriet, 2011). Indeed, Goldenberg et al.
(2020, Study 2) recently used this method to clarify the time
course of attentional amplification in the extraction of mean facial
expressions. Here, it was shown that while both positive and nega-
tive faces are amplified in estimations of mean expression, longer
display durations are required for the bias toward positive faces to
match that for negative faces. Considering that negative faces are
believed to capture attention more readily than positive faces (e.g.,

Eastwood et al., 2001; Hansen & Hansen, 1988), this seems to
suggest that effects of involuntary attention on perceptual averag-
ing are present early on, whereas effects related to the deliberate
allocation of attention may occur at a later stage. As such, if the
bias toward memory matching that we observed in Experiment 1
was due to a strategic attempt to improve accuracy on the VWM
task, then we would expect that the observed bias would be larger
for long displays versus short displays.

Method

Participants

Twenty-seven undergraduates from the University of Toronto
participated in this experiment for course credit. After excluding
two participants for having accuracy less than 3 standard devia-
tions below the group mean on the VWM task, the final sample
consisted of 25 participants (18 female;M = 19.9 years, SD = 1.5).
All participants provided written informed consent and reported to
have normal color vision and normal or corrected-to-normal visual
acuity.

Stimuli and Procedure

The experimental task used in Experiment 3 was similar to that
used in Experiment 1; however, rather than using a constant pre-
sentation duration of 250 ms for ensemble displays, such displays
were now presented for either 150 ms or 500 ms, randomly inter-
mixed throughout each block. Within each of our conditions, trials
were balanced according to study item color and ensemble display
duration. Again, six predetermined orientation means were used,
which were equally present for each display type and duration.
The task consisted of 12 blocks (30 trials each; 360 trials total),
with each consisting of an equal number of trials from each dis-
play type and display duration. Participants were given 12 practice
trials prior to beginning the experiment.

Results and Discussion

Means for the CW, CCW, and control conditions for each of
our dependent measures are displayed in Figure 4. Data for each
dependent measure were analyzed using a 2 (Display Duration:
150 ms vs. 500 ms) 3 3 (Display Type: CCW vs. CW vs. control)
repeated-measures ANOVA. Regarding VWM accuracy, a signifi-
cant main effect of display duration was observed, F(1, 24) = 6.65,
p = .016, hp

2 = .011, with reduced accuracy for items tested follow-
ing longer display durations. As observed in Experiment 1, we
again found a main effect of display type on VWM performance,
F(2, 48) = 13.36, p , .001, hp

2 = .089, with worse performance in
the control condition relative to the CCW, t(24) = 4.29, p , .001,
dz = .86, and CW conditions, t(24) = 4.10, p , .001, dz = .82, but
no difference between CCW and CW conditions, t(24) = .39, p =
.697, dz = .08. The display type by duration interaction was not
significant, F(2, 48) = .91, p = .410, hp

2 , .01.
For orientation estimations, no significant results were

observed in the analysis of CSD, main effect of display dura-
tion: F(1, 24) = .63, p = .436, hp

2 , .01; main effect of display
type: F(2, 48) = .13, p = .882, hp

2 , .01; interaction: F(2, 48) =
1.17, p = .320, hp

2 , .01. Analysis of our bias parameter, how-
ever, revealed a significant main effect of display type,
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F(2, 48) = 12.34, p , .001, hp
2 = .26. As was the case in Experi-

ment 1, mean orientation judgments were rotated more coun-
terclockwise in the CCW condition relative to the control
condition, t(24) = 3.83, p , .001, dz = .77, and more clockwise
in the CW condition relative to the control condition, t(24) =
4.52, p , .001, dz = .90. The difference between the CCW and
CW conditions was also significant, t(24) = 5.10, p , .001,
dz = 1.02. The main effect of display duration did not signifi-
cantly affect response bias, F(1, 24) = 2.07, p = .164, hp

2 , .01,
and importantly, the effect of display type did not interact with
display duration, F(2, 48) = .18, p = .837, hp

2 , .01, with sub-
stantial evidence observed for the null hypothesis (BF01 =
8.62).
Overall, these results further support the notion that the bias

exerted by VWM on perceptual averaging occurs automatically, as
opposed to being explained by a purposeful cognitive strategy
meant to improve accuracy on the VWM task. Still, while these
results do well to minimize the probability that the memory-
matching item bias is driven by a deliberate strategy to improve
VWM performance, it is not insignificant that we again see an
effect of display type on VWM with color now being relevant to
the VWM task (unlike in Experiment 2). This may simply reflect
that participants benefited from the repeated exposure of the
VWM color in the memory-matching displays. Alternatively, par-
ticipants may have guessed strategically during the VWM task by
endorsing a change if the color of the test item was not present in
the orientation display. Indeed, this strategy would have been
more disadvantageous following the presentation of the control
displays as the memory item never matched the color of the items
in these displays (either at the time of study or test) and thus may
account for why VWM accuracy was reduced following control
displays.

Experiment 4

The findings in Experiment 3 again demonstrated that reports of
mean orientation were biased toward the color of elements that matched
the color of a single item actively held in VWM. Importantly, the mag-
nitude of this bias was invariant to changes in display duration (i.e.,
short vs. long presentations), supporting the idea that VWM automati-
cally biases attention toward perceptually similar objects in the environ-
ment, which are then prioritized in the determination of perceptual
averages. Still, while the results of Experiment 3 do work to minimize
the likelihood that our results are explained by a strategic attempt to
improve accuracy on the VWM task, they alone cannot do so defini-
tively. As such, to add greater confidence to our conclusions, in Experi-
ment 4, we sought to further rule out the involvement of strategic
attempts to improve VWM accuracy. To accomplish this, we made it
such that the color of the studied item only changed on rare occasions
at test. Thus, while individuals were still required to maintain the item’s
color in VWM, strategically allocating more attention to memory-
matching elements would provide little advantage in the VWM task.

Method

Participants

Twenty-five undergraduates from the University of Toronto par-
ticipated in this experiment for course credit (22 female; M = 19.8
years, SD = 1.4). All participants provided written informed con-
sent and reported to have normal color vision and normal or cor-
rected-to-normal visual acuity.

Stimuli and Procedure

The procedure used for Experiment 4 was identical to Experi-
ment 1 with one important exception. As was the case in each of

Figure 4
Results of Experiment 3

Note. N = 25. Dependent measures include accuracy for the visual working memory (VWM) task (left), as well as circular standard deviation (CSD;
center) and bias (right) parameters of the error distributions for estimations of mean orientation. Gray bars depict trials containing short orientation dis-
play durations (i.e., 150 ms), and white bars depict trials containing long orientation display durations (i.e., 500 ms). Error bars represent 95% confi-
dence intervals for within-subject designs (Cousineau, 2005). CCW = counterclockwise condition; CW = clockwise condition.
*** p , .001.

MEMORY-DRIVEN SELECTION BIASES PERCEPTUAL AVERAGE 655

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



our previous experiments, a feature of the studied object changed
at the time of test on half of all trials. However, in the current
experiment, “change” trials were designed such that the shape of
the object changed on 83.3% of these trials (i.e., 41.7% of all tri-
als), whereas the color changed on only 16.7% of these trials (i.e.,
8.3% of all trials). In other words, the color of the VWM item had
to be actively maintained in VWM (and thus should still bias fea-
ture-based attention), but because the probability of a color change
was so low, there would be much less motivation to strategically
direct more attention to one colored subset over the other. Prior to
starting the task, participants were given 36 practice trials, in
which the color of the studied object changed at test on three trials
(once for each display condition).

Results and Discussion

Means for all three display conditions for each of our dependent
measures are depicted in Figure 5. Performance on the VWM task
varied by display type, F(2, 48) = 3.38, p = .042, hp

2 , .12. In line
with the results of Experiments 1 and 3, accuracy was lower in the
control condition relative to the CCW, t(24) = 2.25, p = .034, dz =
.45, and CW conditions, t(24) = 2.48, p = .020, dz = .50, with the
CCW and CW conditions not differing significantly from one
another, t(24) = .08, p = .934, dz = .02.
With regard to judgments of mean orientation, while the main

effect of display type was not significant for the CSD parameter,
F(2, 48) = 2.74, p = .075, hp

2 = .10, a significant main effect was
observed for the bias parameter, F(2, 48) = 7.32, p = .002, hp

2 =
.234. Post hoc investigation revealed that, relative to the control
condition, estimation errors were biased in a clockwise direction
for the CW condition, t(24) = 2.60, p = .016, dz = .52. While the
difference between the CCW and control conditions did not reach
significance, t(24) = 1.89, p = .070, dz = .38, there was a significant

difference between the CCW and CW conditions, t(24) = 3.03, p =
.006, dz = 1.02, with mean orientation errors being more clockwise
in the CW condition. Taken together, these results are quite similar
to those reported in Experiments 1 and 3, despite the marginally
significant difference between the CCW and control conditions.
Importantly, the fact that mean orientation errors continued to ex-
hibit a bias related to the maintenance of a color value in VWM
when the probability of a color change was rare further rules out
the possibility that our results are due to a strategic attempt to
improve accuracy in the VWM task (in line with the results from
Experiment 3). Thus, the most likely cause of our results is an
automatic bias to select visual information matching the contents
of VWM, which is then subsequently overvalued in the integration
process.

General Discussion

In the current study, we examined whether VWM exerts an
obligatory influence over perceptual averaging when a subset of
items possesses a memory-matching feature. To do so, we had indi-
viduals perform mean orientation judgments while concurrently
maintaining a colored shape in VWM, which could match the color
of a subset of items in the orientation displays. Supporting our hy-
pothesis, in Experiment 1, we found global estimations of mean ori-
entation to be attracted toward the local subset mean of items
possessing a color common to the VWM item, despite color being
an irrelevant, secondary feature in the orientation task. Further, we
were able to rule out the possibility that this finding was due to
more bottom-up driven processes (namely perceptual priming)
since the effect was eliminated in Experiment 2 where individuals
saw the color of one subset prior to the presentation of the ensemble
display but did not need to store it in VWM. Moreover, our findings
cannot be reduced to a strategic attempt to improve VWM task

Figure 5
Results of Experiment 4

Note. N = 25. Dependent measures include accuracy for the visual working memory (VWM) task (left), as well as circular standard deviation (CSD;
center) and bias (right) parameters of the error distributions for estimations of mean orientation. Error bars represent 95% confidence intervals for
within-subject designs (Cousineau, 2005). CCW = counterclockwise condition; CW = clockwise condition.
* p , .05. ** p , .01.
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performance since, in Experiment 3, we showed the biasing effect
of VWM to be insensitive to display duration, whereas one would
expect the effect to increase with processing time if individuals
were strategically (rather than incidentally) devoting more attention
to color-matching elements. Further, even when the probability of a
color change was low, and thus attending color should not have
been prioritized for the VWM task, we continued to observe the
biasing effect in Experiment 4. Taken together, across four experi-
ments, these results clearly demonstrate that VWM works to auto-
matically prioritize memory-matching elements in perceptual
averaging.
As we have noted, much of the previous works concerned with

the interaction between perceptual averaging and VWM have
approached the matter with respect to understanding the influence
of perceptual averaging over VWM, with such works converging
on the conclusion that perceptual averaging complements VWM
by reducing capacity limitations and minimizing the effects of for-
getting (Alvarez, 2011; Brady & Alvarez, 2011; Corbett, 2017;
Corbin & Crawford, 2018; Dubé et al., 2014; Griffiths et al., 2018;
Lew & Vul, 2015; Lowe et al., 2018; Son et al., 2020; Utochkin &
Brady, 2020). Again, while much less work has considered the
inverse relationship—namely, the effect of VWM on perceptual
averaging—evidence of template-based filtering (i.e., Brand et al.,
2012) suggests that VWM can similarly facilitate perceptual aver-
aging. We confirm this filtering role of VWM in that we demon-
strate that the maintenance of a visual feature in VWM leads to a
significant bias in perceptual average judgments toward memory-
matching items. More importantly, though, we highlight that this
influence of VWM on perceptual averaging can occur incidentally
and thus has an obstructive effect on the extraction of summary sta-
tistics, particularly when memory-matching items and nonmatching
items are of equal relevance. The question, then, is how does the
active maintenance of a visual feature from one dimension (i.e.,
color) interfere with the perceptual averaging of an entirely differ-
ent feature dimension (i.e., orientation)?
At the conceptual level, we draw on the amplification hypothe-

sis, which states that physically salient items are more heavily
weighted than less salient items in the determination of ensemble
summary statistics (Kanaya et al., 2018), to account for the mem-
ory-matching item bias. Again, this hypothesis takes the position
that ensemble coding is achieved through the integration of a sub-
set of items (e.g., Dakin, 2001; Im & Halberda, 2013; Whitney &
Yamanashi Leib, 2018) and argues that physically salient items
have a higher probability of being included within this subset than
less salient items. While we did not systematically vary physical
salience in the current study, the match between the color of the
item held in VWM and the color of the oriented bars encountered
in the orientation displays effectively had the same consequence.
That is, because attentional selection is biased toward elements
that bear perceptual similarity to information actively represented
in VWM (e.g., Bundesen, 1990; Desimone & Duncan, 1995;
Carlisle & Woodman, 2011; Hollingworth et al., 2013; Kumar et
al., 2009; Olivers et al., 2006; Soto et al., 2005; Sun et al., 2015;
Wolfe, 1994), we can confidently assume that the allocation of
attentional resources was greater for the feature-matching items
than the nonmatching items. It is this unequal distribution of atten-
tion following memory-guided selection that we attribute to the
bias toward memory-matching items.

Where we diverge from the amplification hypothesis, however,
has to do with pinpointing the exact mechanism by which the
unequal distribution of attention gives rise to the memory-match-
ing bias. In large part, this is because the amplification hypothesis
is somewhat ambiguous with respect to whether the sample used
to derive perceptual averages is comprised entirely of the most sa-
lient items or just proportionally more of these items. In this
regard, much like Iakovlev and Utochkin (2020), when we com-
pared the observed bias to that which would be expected had indi-
viduals only sampled memory-matching items, we found the
observed bias to be significantly smaller than the expected bias,
indicating that nonmatching items were included in the mean ori-
entation judgments. As such, we ultimately arrive at the same con-
clusion as Iakovlev and Utochkin (2020) in that we come to three
possible routes by which memory-driven selection may bias per-
ceptual averaging. First, in line with the amplification hypothesis
and partial sampling theories of perceptual averaging more gener-
ally (e.g., Allik et al. 2013; Dakin, 2001; Myczek & Simons,
2008; Whitney & Yamanashi Leib, 2018), it is possible that
through memory-guided selection, memory-matching items more
freely gain access to a privileged sample of items to which percep-
tual average calculations are based. For example, to achieve the
bias of �3° observed in Experiments 1 and 3 (where color was
most relevant to the VWM task), from a partial sampling perspec-
tive, this would imply that memory-matching items were sampled
over nonmatching items at a rate of 3 to 2. Alternatively, the
observed bias may instead be accounted for by an exhaustive sam-
pling account of perceptual averaging (e.g., Ariely, 2001; Chong
& Treisman, 2005b; Chong et al., 2008). That is, it is possible that
all items were included in perceptual average calculations but dif-
fered in their weighting, as determined by an attentional scaling
parameter. Last, a hybrid model that takes into account both partial
and exhaustive sampling may also explain the current findings.
For example, an exhaustive sampling mechanism may gather sum-
mary information about the group as a whole (independent of the
focus of attention), while a partial sampling mechanism collects in-
formation about the items with the greatest priority (i.e., memory-
matching items). These two mechanisms could then jointly contrib-
ute to perceptual average judgments, with the magnitude of the bias
reflecting the weighting given to the two sampling mechanisms.

It is worth noting, however, that all three of these proposed
accounts stand at odds with a recent distributed attention model
(Baek & Chong, 2020a), which suggests that the role of attention
in perceptual averaging is better conceptualized as a zoom lens
(i.e., all items receive equal level of attention) rather than as a
spotlight (i.e., some items receive more attentional weighting than
others). From this perspective, there should be no bias toward
memory-matching items as all items should equally contribute to
the mean. To account for this discrepancy, we argue that Baek and
Chong (2020a) mischaracterized the spotlight model of attention
because they treat the selection of individual items as a random
process. This ignores Kanaya et al.’s (2018) proposal that nonran-
dom sampling underlies perceptual averaging but, more broadly, is
inconsistent with what is known about the guidance of attention.
Namely, the allocation of focal attention is believed to follow an
underlying priority map (e.g., Awh et al., 2012; Fecteau & Munoz,
2006; Stemmann & Freiwald, 2019; Wolfe, 2007), which orients
attention in accordance with one’s top-down goals (Bacon &
Egeth, 1994; Folk et al., 1992; Soto et al., 2005), the physical
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salience of items (Corbetta & Shulman, 2002; Theeuwes, 1992;
Yantis, 1993), learned value associations (Anderson, 2016; Ander-
son et al., 2011; Theeuwes & Belopolsky, 2012), and the emo-
tional valence or potential threat of stimuli (e.g., Eastwood et al.,
2001; Hansen & Hansen, 1988; Koster et al., 2004; Schmidt et al.,
2015). It is this underlying priority map that we believe sets the
weighting of individual items within perceptual averaging by
selectively guiding attention to items that receive the greatest lev-
els of activation. Indeed, while our results can only speak directly
to the influence of memory-guided selection on perceptual averag-
ing, as mentioned previously, all of these described factors have
been shown to bias perceptual averaging (e.g., Chen & Zhou,
2018; Choi & Chong, 2020; de Fockert & Marchant, 2008; Dodg-
son & Raymond, 2020; Goldenberg et al., 2020; Iakovlev &
Utochkin, 2020; Kanaya et al., 2018).
Still, while our results stand at odds with the distributed atten-

tion model of perceptual averaging in its pure form, Baek and
Chong (2020b) did recognize the existence of a focal attention
mechanism that they argued serves object recognition independent
of the distributed attention mechanism. This distinction is particu-
larly intriguing when considered alongside a hybrid account of
attentional amplification in that it may serve to bridge the disparity
between our findings and the predictions of the distributed atten-
tion model. That is, it is possible that these two mechanisms do in
fact extract information independent of one another but either
become integrated over time or, at the response stage, jointly con-
tribute to perceptual average judgments. Offering some support to
this idea, it is important to note that when Dodgson and Raymond
(2020) presented stimulus masks immediately following the pre-
sentation of mean size displays (Experiment 2), the bias toward
items matching a previously rewarded color was eliminated. As
such, masking may have worked to selectively disrupt the repre-
sentation of the focally attended item, leaving accessible only the
distributed representation at the time of response. We believe this
to be an interesting possibility that should be pursued further by
future works.
It should additionally be acknowledged that while both our

results and conclusions align strongly with those of Iakovlev and
Utochkin (2020), there was one marked point of difference. Spe-
cifically, in addition to showing that mean orientation errors are bi-
ased toward salient items, Iakovlev and Utochkin (2020) also
found the variance of such errors to be sensitive to the variance of
salient items. That is, when the orientations of salient stimuli
spanned a narrow range, mean orientation reports were less vari-
able relative to when the orientations of salient stimuli spanned a
wide range. From this perspective, it might have been expected
that, in the present study, mean orientation judgments would have
been less variable in the memory-matching display conditions
compared to the control display conditions. Yet we found only one
contrast where CSD was reduced for memory-matching displays
relative to the control displays (see Experiment 1). We suggest
that this difference has to do with the range of orientations used
across the two studies as the means of our colored subsets were
oriented 615° from the global mean, whereas the stimuli used by
Iakovlev and Utochkin (2020) could range from �30° to 30° rela-
tive to the global mean. As such, had we used a wider range of ori-
entation values, our task may have been better able to detect such
stimulus-based effects on response variance.

Furthermore, while the current work clearly demonstrates an
influence of memory-driven selection on perceptual averaging, it
is worth noting that, for our experimental design, several items
matched the VWM item in the orientation displays, whereas in the
traditional dual-task procedure used to examine memory-driven
selection, only a single, salient distractor typically matches the
VWM item color (e.g., Kumar et al., 2009; Olivers et al., 2006;
Soto et al., 2005; Sun et al., 2015). This is a particularly notewor-
thy distinction when it is considered that studies examining the
effect of visual outliers (i.e., singletons) on perceptual averaging
tend to find that such outliers are filtered out or strongly devalued
(e.g., Cant & Xu, 2020; Epstein et al., 2020; Haberman & Whit-
ney, 2010). This might suggest that the bias we observed may
depend on whether the attended items are perceived as belonging
to the group since half of the items in the orientation displays
matched the color of the VWM item in the current study, rather
than a single, unique item. A worthwhile future direction would
thus be to explore how the results of the current study are affected
by the proportion of matching elements within the orientation dis-
plays. That is, if only a single item matches the color of the VWM
item, would one continue to observe a bias of memory-guided
selection, or would this effect be corrected by an outlier filtering
mechanism?

Conclusion

Across four experiments, we show that the active maintenance
of a feature value in VWM exerts an obligatory influence over per-
ceptual averaging such that, if a portion of items possess the main-
tained feature value, perceptual average judgments are
systematically attracted toward the mean of these items. We attrib-
ute the source of this bias to an underlying priority map, which
works to guide attention toward memory-matching items while
also taking into account a host of other factors (including addi-
tional top-down goals of the observer and the physical salience,
learned value associations and emotional valence of the stimuli).
How such attentional allocation ultimately leads to the memory-
matching bias, however, remains an open topic of investigation as
partial sampling models, exhaustive sampling models, and hybrid
sampling models all present plausible routes to attentional amplifi-
cation. It should thus be the aim of future works to definitively test
these three models against one another.
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