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Extensive work has investigated the neural processing of single faces, including the role of shape and surface properties. However,
much less is known about the neural basis of face ensemble perception (e.g., simultaneously viewing several faces in a crowd).
Importantly, the contribution of shape and surface properties have not been elucidated in face ensemble processing.
Furthermore, how single central faces are processed within the context of an ensemble remains unclear. Here, we probe the neural
dynamics of ensemble representation using pattern analyses as applied to electrophysiology data in healthy adults (seven males, nine
females). Our investigation relies on a unique set of stimuli, depicting different facial identities, which vary parametrically and inde-
pendently along their shape and surface properties. These stimuli were organized into ensemble displays consisting of six surround
faces arranged in a circle around one central face. Overall, our results indicate that both shape and surface properties play a signifi-
cant role in face ensemble encoding, with the latter demonstrating a more pronounced contribution. Importantly, we find that the
neural processing of the center face precedes that of the surround faces in an ensemble. Further, the temporal profile of center face
decoding is similar to that of single faces, while those of single faces and face ensembles diverge extensively from each other. Thus,
our work capitalizes on a new center-surround paradigm to elucidate the neural dynamics of ensemble processing and the informa-
tion that underpins it. Critically, our results serve to bridge the study of single and ensemble face perception.
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Significance Statement

We often view groups of faces, called a “face ensemble,” whenever we encounter multiple people (e.g., on a crowded subway).
Yet, little is known about how the brain represents ensembles and how attention to a single individual (e.g., during a
face-to-face conversation in a crowd) impacts ensemble representations. Here, we show that shape and surface properties
contribute to ensemble processing, with shape exhibiting a different neural profile for single versus ensemble face represen-
tations. We also show that the visual system processes central faces within an ensemble differently from unattended faces.
These results indicate that the encoding of ensemble and single faces is mediated by distinct neural mechanisms, highlighting
the importance of studying both as well as their relationship.

Introduction
Visual face processing leverages information about shape (i.e.,
the configuration of face parts and their spacing; Piepers and
Robbins, 2012) and surface properties (i.e., facial pigmentation
and textural properties; Russell et al., 2006). Extensive research
has documented the neural mechanisms of face processing
(Tsao and Livingstone, 2008; Little et al., 2011; Duchaine and

Yovel, 2015), including the representation of shape and surface
properties (O’Toole et al., 1999; Russell et al., 2007, 2012; Jiang
et al., 2009; Burton et al., 2015; Andrews et al., 2016). While these
properties play partly different roles in single-face processing
(e.g., in the representation of identity; Bruce and Young, 1998),
they work together to benefit face recognition (Dzhelyova and
Rossion, 2014). Of Relevance here, the neural dynamics of face
processing (Dobs et al., 2019; Smith and Smith, 2019; Bae,
2020, Muukkonen et al., 2020) evince early encoding of percep-
tual information (e.g., around 100 ms after stimulus onset;
Nemrodov et al., 2016), with partial overlap between shape and
surface encoding (e.g., the latter being encoded prior to the for-
mer; Nemrodov et al., 2019a).

Despite these advances, a broader picture of human face pro-
cessing is limited by the focus on single faces. Often, individuals
are simultaneously exposed tomultiple faces in everyday life (e.g.,
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on a crowded subway train), referred to as a “face ensemble.”
Extracting information from the multitude of items in an ensem-
ble poses a challenge due to limitations in visual working mem-
ory capacity (Luck and Vogel, 1997; Raffone and Wolters, 2001;
Cowan, 2010). To circumvent this, the visual system compresses
redundant statistical information into a single summary metric
(e.g., an average face identity; Alvarez, 2011; Whitney and
Yamanashi Leib, 2018; for review, see Corbett et al., 2023; but
see Ji et al., 2020). Ensembles of stimuli benefiting from percep-
tual expertise, such as faces, are processed highly efficiently, even
though ensemble processing may not rely on exemplar-level
knowledge (Cha et al., 2020).

Research on the neural underpinnings of face ensemble process-
ing is relatively sparse. One study found a positive relationship
between N170 amplitude and the number of faces in a display
(Puce et al., 2013). Another study, utilizing amultivariate approach,
found distinct neural profiles for single and ensemble faces (Roberts
et al., 2019). A third study showed minimal attention is required to
extract face ensemble summaries for emotion (Ji et al., 2018).
However, to date, the contribution of shape and surface informa-
tion in face ensemble encoding has not been addressed.

Even less understood is the representation of single faces
within the context of an ensemble. Most studies on ensemble per-
ception employ an exemplar-cueing paradigm, in which partici-
pants are instructed to identify if a particular item, such as an
object or a face, was a member of a previously seen display
(e.g., de Fockert and Wolfenstein, 2009; Haberman and
Whitney, 2009). However, this does not address how a particular
target central face is represented relative to the overall ensemble
(e.g., an individual engaging with you in a face-to-face conversa-
tion on a crowded subway train). For instance, it is not known
whether the visual system simply includes the central face in
the ensemble summary, or whether it processes it differently.

Given these gaps in our current understanding, here, we aim
to elucidate the neural representation of face ensembles, appeal-
ing to pattern analysis as applied to electroencephalography

(EEG) data. Specifically, we address the relative contribution of
shape and surface properties to face ensemble perception, their
accompanying temporal profiles, and the processing of single
faces within the context of ensembles. To this aim, we use a
unique stimulus design that incorporates a central face in the
ensemble, and we independently vary the shape and surface
properties of face stimuli. In summary, this work provides, to
the best of our knowledge, the first in-depth investigation into
the underlying contribution of shape and surface properties in
face ensemble encoding and into the contribution of central
face perception to neural ensemble processing.

Materials and Methods
Participants. Seventeen healthy adult participants were recruited.

The data of one participant were discarded due to excessively noisy
recordings. Of the remaining 16, 7 were males, and 9 were females,
with an age range of 18–28 years. All participants were right-handed,
had normal or corrected-to-normal visual acuity, and had adequate
face processing abilities as assessed with the aid of the Cambridge Face
Memory Test (Duchaine and Nakayama, 2006). Participants gave
informed consent and received monetary compensation upon comple-
tion of the experiment. The University of Toronto Research Ethics
Board provided ethical approval to conduct this study.

Stimulus design. We sought to manipulate shape and surface proper-
ties independently to evaluate their contribution to facial identity pro-
cessing in face ensembles. Critically, we aimed to ensure that faces
within a given set could be discriminated from faces in different sets,
and, by extension, that these ensembles yield different summary identi-
ties, which is an important aspect when considering comparisons of cen-
tral and surround faces (see below). This involved three general steps: (1)
separating relevant shape and surface properties from a set of faces; (2)
computing cardinal anchor points for shape, surface, and both com-
bined; and (3) interpolating between the anchor points to generate a
matrix of parametrically varying faces.

First, we selected 60 male faces from the Radboud database (Langner
et al., 2010) and cropped them with an oval mask to retain only their
internal features (Fig. 1A). A total of 82 fiducial points weremarked using

Figure 1. Disentangling face shape and surface information. A, Sixty faces were marked with (B) 82 fiducial points accounting for facial shape. C, The coordinates of these points were
extracted and (D) averaged as the mean shape. E, All faces were subsequently remapped to this mean shape, resulting in faces that varied only in surface properties. F, A pixelwise average
of these faces yielded an average face. G, The average face could then be mapped to the fiducial points of each of the 60 faces to yield faces that vary in shape but not surface.
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the InterFace tool (Fig. 1B; Kramer et al., 2017) to extract shape informa-
tion. Fiducial points were averaged (Fig. 1C) across the 60 faces to gen-
erate an average shape (Fig. 1D). All 60 face images were subsequently
warped to this shape average to provide a set of faces that varied in sur-
face, with shape held constant (Fig. 1E). The pixelwise average of these
faces yielded a face average across variation in both shape and surface
(Fig. 1F). Finally, mapping this face average to the 60 sets of original
shape coordinates generated faces that changed in shape, with surface
properties held constant (Fig. 1F)—these were used only as a visual guide
for shape variations as subsequent manipulations were conducted on
shape coordinates and not the images themselves.

Second, to design face stimuli whose shape and surface could be inde-
pendently controlled, as well as discriminated based on setmembership, we
sought to parametrize the stimuli, ensuring similarity between faces within
an ensemble set, but not across sets. To this end, we applied principal com-
ponent analysis (PCA) separately to shape coordinates and surface images

(Fig. 2A). Two dimensions for both shape and surface were derived from
resulting PCs that contained information related to facial identity. For sur-
face, Dimension 1 (D1) was provided by PC 2, which explained 15.7% var-
iance while Dimension 2 (D2) relied on a combination of PCs 4 and 8,
explaining a total of 6.4% variance—PCs 1, 3, 5, and 7 were not selected
as they captured information unrelated to facial identity (e.g., lighting).
For shape, D1 and D2 were provided by PC1 and PC2, which explained
48.9% and 12.4% of the total variance, respectively. New face images
were generated along the two dimensions relative to the average face yield-
ing four cardinal anchors: D1−, D1+, D2−, and D2+ (Fig. 2B, surface
anchors). Of note, anchors for both attributes were equidistant from the
average face as measured via an L2 pixelwise metric to ensure that variation
in low-level image properties is comparable for shape and surface across
their corresponding dimensions.

Third, a face matrix that varied only in surface properties was gener-
ated by a weighted sum of the four anchor faces derived for surface

Figure 2. Generating a stimulus matrix of faces that vary parametrically in shape and surface properties. A, PCA was separately applied to shape coordinates and to surface images previously
derived from a set of faces (Fig. 1). B, Four cardinal anchors were generated as the endpoints of two dimensions, equidistantly from the average face in image space. C, The anchors were linearly
interpolated (color-coded bars indicate the proportional contribution of each dimension and polarity to any given cell in the matrix). D, A matrix of stimuli varying in surface properties based on
the stimulus design schema from (C). In the bottom formula, A are anchors, C are coefficients based on the x and y position of a face in the matrix, and μ is the average face. Four stimulus sets
were created by extracting faces along the edges of the matrix (purple boxes). Only faces bounded by these boxes were used as experimental stimuli. Row and column averages are displayed
next to the face matrix. This procedure was similarly applied to shape coordinates to yield stimuli that only varied in shape, which were subsequently combined with surface information to
produce stimuli varying in both shape and surface properties.
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dimensions (Fig. 2C). To be clear, all faces in this matrix had the same
average shape. This process was repeated for shape, using fiducial points
instead of surface, and the resulting coordinates were then used to warp
the face average into faces that varied in shape properties only. In addi-
tion, a third set of faces was constructed to vary in both shape and surface
properties by mapping coordinates from the shape matrix onto the cor-
responding faces in the surface matrix.

To maximize between-set discriminability, stimulus sets were
extracted from the edge of the face matrix (Fig. 2D). Sets were labeled
in accordance with their closest anchor face. Thus, the final set of stimuli
included four unique sets of faces (labeled D1−, D1+, D2−, and D2+),
which varied in shape, surface, or both (Fig. 3).

The ability to control within- and between-set resemblance is a
benefit of the current procedure. Individual identities within a set were
relatively similar compared to faces in a different set, ensuring that the
resulting ensembles were discriminable from each other. This also
allowed us to manipulate consistency between an ensemble’s center
and surround: in consistent ensembles, center and surround faces were
selected from the same set, whereas in inconsistent ensembles, center
and surround faces were selected from different sets and, hence, exhib-
ited a noticeably different appearance.

However, we note that, despite the four sets appearing perceptually
dissimilar, faces still exhibit high levels of low-level image similarity
across sets (Pearson’s r for pairwise image correlations across pixel
RGB values range between 0.83 and 0.99, with most >0.90). Thus, we
seek to ensure that differences in neural patterns are not simply driven
by low-level variability across face images.

To design ensemble stimuli, all six identities from a given set and
attribute group were placed in a circle (i.e., as surround faces) around
a face at the center (Fig. 4). The consistency of the center-surround
arrangement was manipulated as follows: a consistent ensemble would
contain faces from the same set (e.g., D1+ surround paired with the
mean of D1+ as the central face), whereas an inconsistent ensemble
would contain faces from sets with opposite polarities (e.g., D1+ sur-
round paired with the mean of D1− as the central face). The placement
of the six surround faces in the circular arrangement was randomized.

Of note, using a set mean as the central face, instead of specific set
members, presumablymaximizes the consistency of the center to the sur-
round. This is because the representation of face ensembles is reduced to
the mean rather than any exemplar face, as suggested by both behavioral
(de Fockert and Wolfenstein, 2009; Haberman and Whitney, 2009) and
neural results (Roberts et al., 2019).

Experimental design. Participants completed two EEG recording ses-
sions, each lasting around 2 h including equipment setup, during which
they viewed single-face stimuli or face ensembles. Each session consisted
of 6 single-face and 8-face ensemble runs, totaling 12 and 16 runs across
both sessions, respectively. Ensemble runs were repeated four times con-
secutively, followed by three consecutive single runs. The order of
ensemble and single-face runs was counterbalanced based on session
and participant number.

Participants sat in a quiet, dark room, 60 cm away from a 1,920 ×
1,080 pixel resolution monitor (60 Hz) displaying a black screen and
fixation cross in the center. Stimuli were displayed using Psychtoolbox
for MATLAB (Brainard, 1997). All trials, irrespective of run type, began
with a 100 ms cue consisting of a bright fixation cross, which was fol-
lowed by a 300 ms stimulus display (i.e., a single face or a face ensemble),
and ended with a variable 700–800 ms blank screen with a dimmer cen-
tral fixation cross. Participants were tasked with responding to oddball
trials during this blank period by pressing the space bar if a female
face was present in the center of the screen, either as a single face pre-
sented in isolation or the central face of the ensemble. All oddball trials
were discarded from data analysis. Prior to each session, participants also
completed a short ensemble and single-face practice run, consisting of
half the trials of an experimental run. Feedback on accuracy was given
only during practice.

Importantly, regarding the oddball task, both shape and surface
properties contribute significantly to sex perception in human observers
(Bruce et al., 1993; Bruce and Langton, 1994), and they provide comple-
mentary information in sex recognition tasks (Nestor and Tarr, 2008).
Hence, we believe that the use of our oddball task (i.e., sex recognition)
was unlikely to radically shift attention to one type of facial property over
the other.

For each single-face run, all face stimuli were displayed in random
order to participants. We note that, due to our stimulus design procedure
(Fig. 2), Identities 1 and 6 are shared between dimensions, and so these
faces were only displayed once. This yielded a total of 24 faces (20 unique
single faces plus 4 set mean faces) for each of the three attribute groups
(shape, surface, and both). Each face was repeated three times for a total
of 240 trials per run, which included an additional 24 oddball trials con-
sisting of six female faces repeated four times (i.e., 24 identities × 3 attri-
bute groups × 3 repetitions + 24 oddball trials). Each ensemble run had a
total of 312 trials, containing the same 24 female oddballs as central tar-
get faces (i.e., 2 consistency conditions × 3 attribute groups × 4 sets × 12
repetitions + 24 oddball trials). Individual faces in ensembles as well as

Figure 3. All single-face stimuli. There were four sets of faces, split across dimensions D1 and D2, and across plus and minus polarities. Six faces varied parametrically in shape, surface, or both.
The mean is shown in the rightmost column of each panel (note that Faces 1 and 6 are shared between neighboring stimulus sets as a result of how they were extracted from the face matrix;
Fig. 2D).
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single-face stimuli subtended a visual angle of 2.1° × 3.3° from the 60 cm
viewing distance. Entire ensemble stimuli subtended 9.4° × 10.7° visual
angle.

EEG preprocessing. Data were recorded using a Biosemi ActiveTwo
EEG system with 64 electrodes arranged according to the international
10/20 system. The electrode offset was kept under 40 mV. EEG data
were low-pass filtered using a fifth-order sync filter with a half-power
cutoff at 204.8 Hz and digitized at 512 Hz (∼1.95 ms per time bin)
with 24 bits of resolution.

EEG data were preprocessed offline. Data were digitally filtered (zero-
phase 24 dB/octave Butterworth filter) with a bandpass of 0.01–40 Hz,
along with DC removal and linear detrending for each epoch, which
included −100 ms to +900 ms from stimulus onset. Epochs for false
alarms and all oddball trials were discarded from analyses. Epochs
were visually inspected across trials for each electrode and run, and ocu-
lar artifacts such as eye blinks were removed using Infomax ICA
(Delorme et al., 2007). Overly noisy epochs were also discarded.
Electrodes that were consistently noisy during a given run were interpo-
lated between three neighboring channels. Only 2.1% of trials were
removed due to false alarms, and another 0.2% were removed because
of artifacts, yielding 97.7% of trials retained on average.

Statistical analysis. A subset of 12 bilateral electrodes located over
homolog occipitotemporal (OT) areas (left, P5, P7, P9, PO3, PO7, and
O1; right, P6, P8, P10, PO4, PO8, and O2). These channels exhibited
large amplitudes for event-related potential (ERP) components associ-
ated with face processing (e.g., N170). Also, prior work has documented
their ability to support identity decoding for single faces (Nemrodov
et al., 2018) as well as for face ensemble stimuli (Roberts et al., 2019)
at levels comparable to or better than those supported by all channels
(Nemrodov et al., 2019b). For thoroughness, we considered data based
on all 64 electrodes here as well. This led to a systematic decrement in

decoding performance relative to the results reported below based on
only 12 OT electrodes (collapsing across the pairwise comparisons
reported in our multivariate analyses: F(1,15) = 25.41, p < 0.001; see
Multivariate results). Further, a comparison between left and right OT
electrodes yielded no significant difference for any type of decoding
described below (F(1,15) = 1.53, p= 0.235). Taken together, these findings
motivated our decision to focus here on EEG signals from the subset of
OT electrodes noted above.

For univariate analyses, ERPs for all unique identities within an attri-
bute group were averaged. We analyzed whether the variability of stimu-
lus types (consistent ensembles, inconsistent ensembles, or single faces)
modulated the amplitude and onset of the N170, P1, and P2 ERP com-
ponents. The latter two, similar to N170, have been implicated in face
processing (Halit et al., 2000; Mercure et al., 2008; Kuefner et al., 2010;
Wang et al., 2015; Tanaka, 2018).

For multivariate pattern analyses, repetitions of all unique stimuli
within a given run (i.e., repetitions of the same ensemble or single stimu-
lus), timepoint, and OT channel were averaged and z scored, and outliers
were winsorized to three SDs. The entire dataset was subsequently nor-
malized within the range of 0–1. We computed the binary classification
of stimulus pairs for each participant by training a linear support vector
machine (c = 1) using leave-one-block-out cross-validation (i.e., 12
blocks for single-face decoding and 16 blocks for face ensemble decod-
ing). Classification performance was assessed by comparing each partic-
ipant’s accuracy against permutation-based chance-level accuracy
(yielding values between 49.92% and 50.05% based on 1,000 permuta-
tions) via Wilcoxon signed-rank test (WSR, standardized z values
reported) and by applying appropriate corrections for multiple compar-
isons (see below). Analyses were conducted both jointly across time
points in a large temporal window to maximize decoding success (i.e.,
temporally cumulative analysis), as well as for sequences of smaller tem-
poral windows to capture the time course of decoding.

Patterns for classification analysis were constructed based on stimu-
lus pairs that targeted specific properties of the stimuli as follows (see

Figure 4. Examples of ensemble stimuli from set D2 that vary in both shape and surface properties. Six faces form the ensemble surround, and the mean of the set of the same or opposite
polarity provides the ensemble’s central face. Consistent ensembles have matching centers and surrounds (e.g., D2+ surround, and the mean of D2+ as center). Inconsistent ensembles have
opposing centers and surrounds (e.g., D2+ surround, and the mean of D2− as center).
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Table 1 for examples). First, for single faces, each single face in a partic-
ular set was compared to each single face from the same dimension but
opposing polarity—this also included the comparison of mean faces
across polarity. Second, for face ensembles, stimuli were similarly com-
pared across dimension polarity. Of note, they were compared within
consistency (i.e., consistent stimuli were compared only to consistent sti-
muli, and inconsistent stimuli only to inconsistent stimuli). Third, for the
purpose of consistency decoding, consistent stimuli were jointly com-
pared to inconsistent stimuli to avoid any confounds based on the facial
identity of the center or surround (e.g., the ERP profiles of D1− consis-
tent and D1+ consistent were averaged and, then, compared to the aver-
age of ERP profiles elicited by D1− inconsistent and D1+ inconsistent).
Fourth, for surround decoding, different surrounds sharing the same
center faces were compared to each other. To avoid a consistency-based
confound, the ERP profiles of certain consistent and inconsistent stimuli
were averaged and, then, compared to their averaged counterpart (e.g.,
the average of D1− consistent and D1− inconsistent was decoded
from the average of D1+ consistent and D1+ inconsistent). This ensured
that consistent information was matched across decoding classes. Last,
for target decoding, we followed a similar approach while controlling
for surround information and consistency.

For temporally cumulative analyses, decoding of different stimulus
classes (Table 1) was conducted across spatiotemporal patterns consist-
ing of 3,684 features (12 OT electrodes × 307 time bins within a temporal
interval of 50–650 ms). This 600 ms window was chosen to capture both
early- and high-level visual information for single faces (Ghuman et al.,
2014; Nemrodov et al., 2016, 2018; Vida et al., 2016) and face ensembles
(Haberman et al., 2009; Roberts et al., 2019). This window was further
validated by our time course analyses, revealing that most above-chance
decoding took place during this interval. Differences between decoding
accuracy across combined shape and surface, as well as shape and surface
alone, were assessed via the nonparametric Friedman test (χ2), with mul-
tiple comparison WSR tests evaluating significant omnibus findings. χ2

effect size is reported via Kendall’s W and the rank-biserial correlation
(abbreviated as RC) for WSR.

For time course analyses, classification used a sliding ∼10 ms win-
dow, corresponding to five ∼1.95 ms time bins, between −100 ms to
700 ms relative to stimulus onset. Given the number of time bin
comparisons (i.e., 358), significant levels of above-chance accuracy
were determined by adopting a more conservative approach (i.e., a non-
parametric sign test against 50% accuracy). To further control for false
positives, we discarded significant time intervals that did not include at
least two consecutive significant time bins.

All analyses were conducted using Letswave 6 (Mouraux and Iannetti,
2008), MATLAB 2016b, and JASP 0.17.1 (jasp-stats.org/). Multiple com-
parison correction was implemented using Bonferroni (for <10 compari-
sons) and false discovery rate (FDR; for ≥10 comparisons). Finally, to
add confidence in significant findings and to aid the interpretation of sta-
tistically nonsignificant results, we employed Bayesian hypothesis testing
(JASP). Resulting BF10 values are reported, providing weight in favor of
the alternative (BF10 > 1) or null (BF10 < 1) hypotheses.Modeling was based
on the recommended default distributions for unspecified priors: the

uniform distribution for ANOVA equivalents (Rouder et al., 2012) and
Cauchy’s distribution for t test equivalents (Ly et al., 2016).Multiple correc-
tions for omnibus results relied on a Bonferroni-like adjustment to model
posteriors (Westfall et al., 1997). Below, we adopt conventional interpreta-
tions (BF in favor of H1 over H0, 1–3= anecdotal, 3–10= substantial, 10–30
= strong, 30–100= very strong, and >100= extreme evidence; BF in favor of
H0 over H1, 0.33–1= anecdotal, 0.10–0.33 = substantial, 0.01–0.03= very
strong, and <0.01 = extreme evidence; Wagenmakers et al., 2011). Overly
large BF10 are converted to scientific notation.

Results
Univariate results
Ensemble stimuli elicited ERP signals with larger amplitude than
single faces at P1 (mean difference = 0.62 μV, t(30) = 2.10, p=
0.044, d= 0.53, BF10 = 3.04) and P2 (mean difference = 1.68 μV,
t(30) = 8.67, p < 0.001, d= 2.17, BF10 = 3.14 × 10

10), as well as
an earlier peak for N170 (mean difference = 4.66 ms, t(30) =
2.68, p= 0.024, d= 0.67, BF10 = 86.18) and P2 (mean difference
= 12.71 ms, t(30) = 3.85, p < 0.001, d= 0.96, BF10 = 318.32;
Fig. 5). Interestingly, there were no differences between consis-
tent and inconsistent ensembles, as reflected by the overlap of
their ERP profiles (all p > 0.999, all BF10 < 0.73).

Table 1. List of stimulus classes for decoding purposes

Decoding Approach Instances of class pairs

Single faces Faces are decoded within dimension but across polarity (e.g., all faces from D1− vs
all from D1+; Fig. 3)

74 per attribute: any 7 D1− versus any 7 D1+; any 5 D2− versus any 5 D2+*

Face ensembles Ensembles are decoded across polarity but within set and consistency 4 per attribute: D1− C versus D1+ C; D2− C versus D2+ C; D1− I versus D1+ I;
D2− I versus D2+ I

Ensemble
consistency

Consistent ensembles are decoded from both inconsistent ensembles for each
dimension

2 per attribute: averaged signals for D1− C and D1+ C versus D1− I and D1+ I;
same for D2

Ensemble surround Surrounds are decoded while controlling for central face and consistency information 2 per attribute: averaged signals for D1− C and D1− I versus D1+ I and D1− C;
same for D2

Ensemble center Center faces are decoded while controlling for surround and consistency information 2 per attribute: averaged signal for D1− C and D1+ I versus D1− I and D1− C;
same for D2

Decoding is repeated for each of three attribute groups: shape, surface, or both. Ensemble stimuli are designated by the identity of surround faces (e.g., D1+ I designates an ensemble with surround faces from group D1+ and the mean
of faces from group D1− as a center face; D, dimension; C, consistent ensemble; I, inconsistent ensemble). *Two single faces are shared between D1 and D2 for each polarity and are counted here only as members of D1.

Figure 5. ERPs averaged across 12 OT channels for consistent ensemble, inconsistent
ensemble, and single-face stimuli. Univariate differences were found between single faces
and ensembles, but not between different types of ensembles. *p< 0.05, ***p< 0.001;
Bonferroni-corrected.
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These results reveal that modulation of ERP profiles is driven
by differences between single and ensemble faces, which may be
explained in part by differences in the number of faces in the sti-
mulus display and visual angle as well as by differences in visual
complexity. The present lack of univariate differences for center-
surround consistency furthermotivates our multivariate analysis.

Multivariate results
Single faces
Overall, differences in single-face decoding accuracy were
observed across attribute groups (χ2(2) = 23.63, p < 0.001, W =
0.738, BF10 = 3.61 × 109). Significant decoding was found for
face pairs in each of the three attribute groups (shape and
surface combined, accuracy = 62.8 ± 1.2%, z = 3.52, p < 0.001,
RC = 1.000, BF10 = 1.02 × 106; shape, accuracy = 52.7 ± 0.6%,

z = 3.26, p = 0.002, RC = 0.926, BF10 = 165.90; surface, accu-
racy = 64.9 ± 1.2%, z = 3.52, p < 0.001, RC = 1.000, BF10 = 5.27
× 106; Fig. 6A). Surface information, both by itself or when
combined with shape, contributed more to decoding relative
to shape by itself (in both cases: mean difference >10.1 ±
1.3%, both z > 3.46, both ps < 0.002, both RC > 0.999, both
BF10 > 13,818.64). No difference in decoding accuracy was
observed between the surface by itself or when combined
with shape (mean difference = 2.2 ± 0.9%, z = 2.22, p = 0.079,
BF10 = 2.80).

The time course of single-face processing (Fig. 7A) revealed
reliable pairwise decoding of identity across attribute groups.
Here, surface properties contributed more extensively to identity
decoding compared with shape, consistent with our temporally
cumulative findings. Interestingly, reliable decoding for combined

Figure 6. Temporally cumulative pairwise decoding of (A) single faces, (B) face ensembles, and (C) consistent versus inconsistent face ensembles. Significant decoding was observed in all
cases except for decoding of only shape or only surface for consistency. Pairwise differences were significant for comparisons of shape versus surface (A,B), and there were no differences between
shape and surface versus just surface. ns, not significant, *p< 0.05, **p< 0.01, ***p< 0.001; Bonferroni-corrected; error bars show ± 1 SE.

Figure 7. The time course of pairwise decoding across attribute groups for (A) single faces and (B) face ensembles. Consistent with the temporally cumulative results (Fig. 6), surface
information, by itself or combined with shape, contributed more extensively to decoding compared with shape by itself. Each position on the time axis represents accuracy at that given
time point centered on a 10 ms window. Accuracy across time bins is compared against 50% (hashed line) via sign test. Resulting p values are FDR-corrected (q< 0.05), and significant
time bins are denoted by dark gray shading; light-shaded gray indicates ± 1 SE
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shape and surface began 30 ms earlier than for surface alone, high-
lighting the joint contribution of shape and surface properties in
face identity processing (Dzhelyova and Rossion, 2014).

In sum, we show reliable decoding of single-face identity from
both shape and surface properties, with the latter serving as the
dominant property. Importantly, these results are in broad agree-
ment with previous work on single-face identity decoding
(Nemrodov et al., 2016, 2019a,b; Dobs et al., 2019; Smith and
Smith, 2019; Bae, 2020) and serve to ground our investigation
of face ensembles.

Face ensembles
Overall, we found significant differences in temporally cumula-
tive decoding accuracy for face ensembles (χ2(2) = 14.46, p <
0.001, W= 0.452, BF10 = 680,885.92). Decoding accuracy was
significant for all three attribute groups (all accuracy estimates
>61.2 ± 2.1%, all zs > 3.05, all ps < 0.003, all RCs > 0.868, all BF10
> 88.02; Fig. 6B).

As observed with single faces, the surface, both by itself or
when combined with shape, contributed more to ensemble
decoding accuracy compared with shape (both mean difference
>19.2 ± 1.3%, both zs > 3.05, both ps < 0.002, both RC> 0.868,
both BF10 > 157.09), and there was no significant difference
between combined shape and surface versus just surface (mean
difference = 1.2 ± 1.6%, z= 0.73, p > 0.999, BF10 = 0.33).

The time course of ensemble decoding (Fig. 7B) revealed a
similar pattern to that of single faces. Notably, the onset of
ensemble decoding began around ∼150 ms and tapered off after
550 ms. Moreover, surface, by itself or when combined with
shape, contributed more extensively to ensemble decoding com-
pared with shape by itself.

Next, we found significant decoding of consistent versus in-
consistent ensembles (accuracy = 54.1 ± 1.6%, z=2.33, p = 0.010,

RC= 0.662, BF10 = 6.36) and an overall difference in accuracy
across the three attribute groups (χ2(2) = 8.79, p= 0.012, W=
0.275, BF10 = 3.86), which, interestingly, was driven by combined
shape and surface properties (shape and surface accuracy = 57.8
± 2.5%, z= 2.53, p= 0.017, RC= 0.721, BF10 = 14.27; shape accu-
racy = 49.5 ± 2.0%, z=−0.41, p > 0.999, BF10 = 0.22; surface accu-
racy = 55.0 ± 2.2%, z= 1.86, p= 0.094, BF10 = 3.26; Fig. 6C). The
difference between consistency decoding for shape and surface
versus just shape approached significance (mean difference =
8.3 ± 3.0%, z= 2.38, p= 0.052, BF10 = 3.80; both remaining com-
parisons, mean difference <5.5 ± 2.8%, both zs < |1.73|, both ps
> 0.249, both BF10 < 1.15).

To shed more light on the above results, we assessed the neu-
ral dynamics of surround and central face processing separately.
To this aim, during classification, stimuli were grouped by con-
trolling for center and surround information, respectively (see
Table 1 for examples). Both surrounds (accuracy = 57.0 ± 1.3%,
z= 3.10, p= 0.002, RC= 0.882, BF10 = 673.14) and central faces
(accuracy = 80.1 ± 1.3%, z= 3.52, p < 0.001, RC = 1.000, BF10 =
3.60 × 1010) yielded significant decoding accuracy across attri-
bute groups (Fig. 8A), with central faces yielding higher accuracy
(mean difference = 23.1 ± 1.9%, z= 3.52, p < 0.001, RC= 1.000,
BF10 = 3.40 × 10

6).
Further, we found an overall difference in decoding across

attribute groups both for surrounds (χ2(2) = 8.81, p= 0.012, W=
0.275, BF10 = 2.02) and for central faces (χ2(2) = 14.51, p < 0.001,
W= 0.453, BF10 = 1.30 × 10

6). Surround decoding was driven by
combined shape and surface properties (shape and surface accu-
racy = 60.9 ± 2.2%, z= 3.00, p= 0.004, RC= 0.853, BF10 = 341.70;
shape accuracy = 52.7 ± 2.4%, z= 0.78, p= 0.657, BF10 = 0.79; sur-
face accuracy = 57.4 ± 2.4%, z= 2.53, p= 0.017, RC= 0.721, BF10
= 13.09; Fig. 8B), as the highest level of decoding accuracy was
found for combined shape and surface information (shape vs

Figure 8. Separate decoding of surround and center faces. A, Surround and center faces are decoded significantly above chance (collapsed across all three attribute conditions). B, Surround
decoding is maximized for surface and shape properties combined. C, Central face decoding is driven by both shape and surface properties, with a higher contribution from surface information.
D, The time course of decoding surround faces, center faces, and center-surround consistency is shown collapsed across attribute conditions. Both the ensemble surround and center, as well as
their consistency, show intervals of above-chance classification. ns, not significant, *p< 0.05, **p< 0.01, ***p< 0.001; Bonferroni-corrected; error bars show ± 1 SE.
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surface, mean difference = 4.7 ± 3.9%, z= 1.42, p= 0.467, BF10 =
0.47; shape and surface vs shape by itself, mean difference = 8.2
± 2.5%, z= 2.76, p= 0.018, RC = 0.808, BF10 = 8.65; shape and
surface vs surface by itself, mean difference = 3.5 ± 3.3%, z=
0.70, p > 0.999, BF10 = 0.41).

Next, significant central face decoding occurred for both
shape and surface properties (shape and surface combined accu-
racy = 86.4 ± 1.5%, z= 3.52, p < 0.001, RC= 1.000, BF10 = 3.38 ×
1010; shape accuracy = 65.6 ± 3.4%, z= 3.10, p= 0.003, RC=
0.882, BF10 = 181.11; surface accuracy = 88.4 ± 2.1%, z= 3.52,
p < 0.001, RC= 1.000, BF10 = 1.21 × 10

9; Fig. 8C). Again, surface
properties made the greatest contribution to decoding accuracy
(shape vs surface, mean difference = 22.8 ± 4.5%, z= 3.21, p=
0.004, RC= 0.912, BF10 = 215.27; shape and surface vs shape by
itself, mean difference = 20.8 ± 4.3%, z= 3.21, p= 0.004, RC=
0.912, BF10 = 158.18; shape and surface vs surface by itself,
mean difference = 2.0 ± 1.6%, z= 1.31, p= 0.575, BF10 = 2.73).

Further, we observed distinct temporal profiles for decoding
surround versus central faces. The onset of significant classifica-
tion for surrounds began at around 250 ms and ended at around
600 ms (Fig. 8D, left panel). Significant decoding of central faces
occurred earlier, starting around 120 ms, and continued for the
duration of the epoch (Fig. 8D, center panel). Center-surround
consistency exhibited significant classification from 150 ms to
around 680 ms (Fig. 8D, right panel).

Of note, the temporal profile of the surround faces aligns with
previous work on ensemble face decoding using only surround
faces (Roberts et al., 2019), with an initial peak at 250 ms, fol-
lowed by other peaks at 300 ms and 400 ms. At the same time,
the profile of central faces is comparable to that observed for
the classification of single faces (Fig. 7A) as well as to that from
previous research on single-face processing (Nemrodov et al.,
2016, 2018; Roberts et al., 2019). Hence, it appears that the sur-
round and the center of an ensemble are encoded differently,
without impacting the time course of each other’s processing.

The time course of information processing for single faces versus
face ensembles
For a detailed comparison of the neural dynamics of information
processing between single and ensemble faces, we grouped

selected time course profiles by type of decoding and stimulus
attributes (Fig. 9). Visual comparisons are complemented via
Pearson correlation between time course data. Here, we applied
Fisher z transformation to r values computed separately for
each participant and performed a one-sample t test comparing
mean z values (�z) to zero. The temporal window was restricted
between 100 ms and 600 ms post-stimulus onset, where most
classification results occurred—this also prevents inflating the
correlation coefficient when including near-chance accuracy val-
ues outside this interval. The resulting p values are Bonferroni-
corrected. This procedure highlights four notable findings and
offers a clearer visualization of our time course results.

First, decoding profiles for single and ensemble central faces
are quite similar (Fig. 9, yellow band for single faces vs purple
band for the latter) and are significantly correlated (mean r =
0.28, �z = 0.31+ 0.06, t(15) = 4.91, p < 0.001, d= 1.23, BF10 =
164.40), which points to comparable processing dynamics for
ensemble central faces and single faces.

Second, the time course of surface-based decoding is similar
for single faces and face ensembles (Fig. 9, red bands; mean r =
0.34, �z = 0.37+ 0.06, t(15) = 5.94, p < 0.001, d= 1.48, BF10 =
899.44). This was not found with shape (green bands, mean r =
0.02, �z = 0.02+ 0.04, t(15) = 0.46, p > 0.999, BF10 = 0.28), which,
interestingly, contributed more to the processing of ensembles
compared with single faces.

Third, the time course of shape-based decoding differs sub-
stantially for ensembles compared with single faces, as reflected
by an earlier onset and longer duration of significant decoding
for face ensembles. One caveat in this respect though concerns
the smaller number of classification patterns for single face versus
ensemble decoding (i.e., 12 vs 16). This, along with the less prom-
inent contribution of shape-to-face processing, may have
obscured the precise involvement of shape in single-face process-
ing and the comparison with its counterpart in ensemble
processing.

Fourth, the time courses of surround and center decoding
were not correlated (mean r= 0.01, �z = 0.01+ 0.05, t(15) =
0.18, p > 0.999, BF10 = 0.26), and the time course of the surround
was also not correlated with that of single faces (mean r= 0.06,
�z = 0.07+ 0.05, t(15) = 1.31, p > 0.999, BF10 = 0.53).

Figure 9. A comparison of the temporal profiles for ensemble and single-face processing (relying on information from Figs. 7, 8D). Colored bands indicate significant temporal intervals of
decoding. Brightness relates to decoding accuracy (brighter colors indicate higher accuracy) at a given time point, standardized to aid visual comparison. The temporal profile of surface infor-
mation is similar for both single and ensemble faces, whereas that of shape vastly differs, with an earlier decoding onset and longer duration for ensembles compared with single faces. The
profiles for single and ensemble center faces are also highly similar. Relating center and surround information (i.e., consistency) occurs across the entire epoch.
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Discussion
Our study seeks to elucidate the dynamics of face ensemble
encoding, addressing several important aspects of their neural
processing. To this end, we rely on stimuli varying in facial iden-
tity separately with respect to shape and surface properties,
matched across low-level image differences and presented in a
novel center-surround ensemble paradigm. In short, with the
aid of our stimulus design and multivariate pattern analysis, we
show distinct neural profiles for the processing of single faces ver-
sus face ensembles, different contributions of shape and surface
properties, and parallel extraction of center and surround face
information from ensembles.

Our univariate results point to an earlier N170 onset for face
ensembles, consistent with previous research (Puce et al., 2013;
Roberts et al., 2019). However, the general lack of univariate
differences, such as that reflecting ensemble center-surround
consistency, underscored the importance of using more sensitive
techniques.

Accordingly, multivariate analyses revealed a more extensive
decoding profile for the surface than shape in the case of both sin-
gle and ensemble faces, in agreement with prior work arguing for
a more dominant role of surface information (Bruce and
Langton, 1994; Hole et al., 2002; Russell et al., 2006; Kaufmann
and Schweinberger, 2008; Parr and Taubert, 2010; Nakajima
et al., 2012; Dzhelyova and Rossion, 2014; Nemrodov et al.,
2019a; Rogers et al., 2022). The finding that the combination of
shape and surface properties provided little benefit compared
to surface cues alone, but decoding based on shape alone was still
significant, may indicate that the visual system can recruit both
properties for single face and ensemble processing but relies pre-
dominantly on surface properties. This supports prior research
that describes ensemble encoding as a form of texture perception
(Dakin and Watt, 1997; Parkes et al., 2001; Morgan et al., 2008,
2014; Im and Halberda, 2012; Whitney et al., 2014).

Interestingly, surface and shape cues may contribute differen-
tially to the encoding of face ensembles. For example, both prop-
erties were utilized when decoding ensemble central faces,
whereas only surface cues were utilized when decoding sur-
rounds. Further, consistency decoding only reached significance
when shape and surface information were combined.

Given the robust decoding of surface information, these
results suggest that, similar to single faces, ensembles are pro-
cessed primarily in terms of surface information. Shape, however,
appears to play a more complex role. Shape information is
extracted for both single and ensemble faces, though the profile
is markedly different across the two types of stimuli. Shape
may play a more general role in face ensemble encoding, involv-
ing the entire stimulus, and not just one aspect of it (i.e., not just
the central face). However, our analyses did not find clear evi-
dence for the implication of shape in surround or consistency
decoding (beyond a small advantage to combining shape and
surface relative to the only surface in surround decoding).

For surface properties, it appears that both ensemble and sin-
gle faces rely on similar processingmechanisms. It is possible that
facial surface properties are processed similarly for ensemble and
single items but in separate cortical regions. For single faces, sur-
face cues are likely encoded in the cortical face network
(Grill-Spector et al., 2017). For ensembles, surface cues may be
processed in regions implicated in general ensemble encoding.
One candidate region includes the parahippocampal gyrus,
which responds to variations in the surface properties of object
ensembles (Cant and Xu, 2012, 2017). Recent behavioral

evidence suggests a domain-general ability involved in complex
object ensemble encoding (Chang and Gauthier, 2022).
Whether this generalizes to face ensembles and whether this is
subserved by the parahippocampal gyrus are questions that await
further investigation.

Next, we assessed the dynamics of information processing
for face ensembles. Central face identity is decoded early, start-
ing around 120 ms, while surround information is processed
next, from 200 ms. Center-surround consistency decoding
occurs during most of the temporal epoch. Thus, a relatively
straightforward progression of ensemble processing involves
the initial encoding of a target (in this case the central face), fol-
lowed by the surround, with the consistency of the two being
simultaneously compared. The underlying mechanism driving
consistency decoding is unclear and remains subject to future
research. One possibility is that it reflects a neural signature cor-
responding to outlier detection. However, if that were the case,
one may expect differences between consistent and inconsistent
ensembles in our univariate results, given the strong neural
response to outliers in ensemble processing (Cant and Xu,
2020).

Of note, we sought to study single-face processing within the
context of face ensembles, through the development of a novel
center-surround paradigm. This differs from typical ensemble
studies, which often involve set membership judgments of a sin-
gle probe following an ensemble display. These paradigms have
effectively shown that the perception of single faces from the
ensemble is biased toward the ensemble average (de Fockert
and Wolfenstein, 2009; Haberman and Whitney, 2009), which
undermines exemplar representation in ensemble encoding.
However, participants in these studies often do not fixate on
any particular face in the ensemble. Here, we asked how single
faces at the center of fixation are represented within the broader
context of an ensemble (e.g., as one would view another person
during a face-to-face conversation on a crowded subway). Our
paradigm involves foveating a central face, mimicking single-face
judgment tasks, while, simultaneously, presenting this face as a
member of a larger ensemble. Furthermore, the central face
was rendered relevant to the behavioral task, which served to
maintain participants’ attention. Arguably, this provides an
opportunity to bridge ensemble and single-face processing and
to explore the role of attention in this process. For example, dis-
tributed versus focused attention toward targeted faces may help
elucidate the role of attention in ensemble processing, a topic of
ongoing debate (Jackson-Nielsen et al., 2017; Chen et al., 2020).

Our results indicate that central ensemble faces are processed
similarly to single faces, and, importantly, that the ensemble sur-
round can be captured in the absence (or minimal deployment)
of direct attention, given our experimental task. Moreover, the
temporal processing profiles for center and surround faces
were uncorrelated, suggesting relatively independent processing
of center ensemble (and single faces) versus surround ensemble
faces. These findings parallel what has been found for single
objects versus object ensembles (Cant et al., 2015), as well as
research that argues for two separate modes of visual processing
for ensemble perception versus focused attention (Baek and
Chong, 2020). Indeed, our surround decoding results are similar
to previous ensemble decoding research which controlled for
attentional deployment (Roberts et al., 2019). Arguably, these
results demonstrate a novel and more ecologically valid way to
explore the link between single and ensemble face perception
and demonstrate the utility of center-surround paradigms as a
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way to compare the dynamics between single and ensemble pro-
cessing for both faces and non-face objects.

At the same time, we note that the “target” face in our study
was always centrally located, hence, comparing the target face to
the surround also entails a comparison of central versus periph-
eral vision. To disentangle these aspects of our design, future
work can vary the spatial location of the target face within the
ensemble (e.g., by randomly choosing one of the six surround
faces from the periphery).

Further, we note that our current results are based on ERP
patterns across bilateral OT electrodes. Our approach is moti-
vated by the overall decoding advantage of this electrode subset
over that based on the entire set and, also, by the lack of signifi-
cant differences for laterality. However, future work is needed to
clarify the extent to which different groups of electrodes carry rel-
evant information (e.g., about shape vs surface information or
center vs surround faces). EEG-based spatiotemporal searchlight
analysis (Dalski et al., 2023) and/or feature selection (Nemrodov
et al., 2019b) may provide valuable insights in this sense.

In conclusion, here, we establish the contribution of shape
and surface properties in face ensemble processing, and we reveal
both similarities and differences relative to single-face process-
ing. Specifically, we show a different role of shape information
and a global involvement of surface information in ensemble
processing relative to single-face processing. Moreover, we
demonstrate the utility of a novel center-surround paradigm
developed to complement traditional exemplar-cueing para-
digms in the study of ensemble perception. Together, these
results serve to elucidate the neural dynamics of ensemble face
perception, the visual information underlying this process, and
its relationship with single-face processing.
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