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A B S T R A C T

Multiple cortical regions are crucial for perceiving the visual world, yet the processes shaping representations in
these regions are unclear. To address this issue, we must elucidate how perceptual features shape representa-
tions of the environment. Here, we explore how the weighting of different visual features affects neural
representations of objects and scenes, focusing on the scene-selective parahippocampal place area (PPA), but
additionally including the retrosplenial complex (RSC), occipital place area (OPA), lateral occipital (LO) area,
fusiform face area (FFA) and occipital face area (OFA). Across three experiments, we examined functional
magnetic resonance imaging (fMRI) activity while human observers viewed scenes and objects that varied in
geometry (shape/layout) and surface properties (texture/material). Interestingly, we found equal sensitivity in
the PPA for these properties within a scene, revealing that spatial-selectivity alone does not drive activation
within this cortical region. We also observed sensitivity to object texture in PPA, but not to the same degree as
scene texture, and representations in PPA varied when objects were placed within scenes. We conclude that PPA
may process surface properties in a domain-specific manner, and that the processing of scene texture and
geometry is equally-weighted in PPA and may be mediated by similar underlying neuronal mechanisms.

Introduction

In only the briefest of moments, the human visual system is able to
draw on a broad array of cues to efficiently identify and navigate
complex environments. A fundamental question of visual perception
has been how the brain represents scene information to perform this
feat. Since its initial description, the parahippocampal place area (PPA)
(Epstein and Kanwisher, 1998) has become a critical region for
understanding the neural mechanisms underlying this ability, yet
diverse claims to its function have produced ongoing debate.
Emerging with the initial description of PPA, the influential spatial
layout hypothesis posits this region represents the geometric structure
of a scene as defined by its background elements. Evidence has since
produced support for this hypothesis through the encoding of spatial
features within a scene, such as structural geometry or layout (Epstein
et al., 2003), spatial boundary (Park et al., 2011), and spatial depth
(Kravitz et al., 2011). Conversely, a growing body of work suggests PPA
plays a broader role in scene recognition, extending beyond the

confines of the spatial layout hypothesis to include the processing of
high-level conceptual scene categories (Walther et al., 2009, 2011;
Dilks et al., 2011), non-spatial contextual associations of objects (Bar
et al., 2008; Aminoff et al., 2007) and events (Diana, 2016), and the
surface texture and material properties of isolated objects (Peuskens
et al., 2004; Cant and Goodale, 2007, 2011). Evidence further suggests
this region connects goal-states and context to construct a flexible
neural representation of the environment by integrating multiple visual
features diagnostic of scene identity (Lowe et al., 2016). Nevertheless,
disentangling and directly comparing the unique contributions of
individual visual elements to scene representation has been a central
challenge, and previous research has yet to elucidate the relative
importance of individual visual features in shaping underlying neural
responses, thus leaving these questions unanswered.

Akin to structural features, surface properties are ubiquitous within
a scene, and inform our general perception and recognition of the
world around us. For instance, Steeves et al. (2004) have shown that a
patient with profound visual form agnosia (impairments in processing
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structure) was able to use visual texture and colour information for
accurate scene recognition, suggesting these visual features play an
important role in the formation of scene identity. In object perception,
surface characteristics such as texture may facilitate visual search by
defining edges (Biederman and Ju, 1988). Moreover, texture is
instrumental in providing visual cues which aid in identification and
action planning necessary for interacting with objects (Buckingham
et al., 2009; Gallivan et al., 2014), and may form a contextual bridge
linking an object to its surrounding environment (Lowe et al., 2015).
Research has further highlighted the importance of surface properties
in the perception of natural scenes, where this feature may be
particularly important for the formation of scene identity (Lowe
et al., 2016).

In light of the importance of both geometry and surface properties
in object and scene perception, the present study aims to directly
explore the relative contributions of these features across scene- and
object-selective visual cortex in order to ascertain the importance of
both geometry and surface properties in shaping representations of our
visual world. To accomplish this, we use a novel set of images
specifically designed to explore the relative weighting (i.e., levels of
univariate activation) of geometry and surface properties in object and
scene perception, and then compare neural representations of these
features across objects and scenes. We first test the hypothesis that PPA
will show equal weighting (i.e., equivalent levels of activation) to the
processing of the geometry and surface properties of a scene, but
greater sensitivity to the surface properties of an object over its shape
(Cant and Goodale, 2007, 2011), when scenes and objects are
presented in isolation (Experiment 1). Building on previous behavioral
research (Lowe et al., 2015), we next explore object-scene interactions
and test the hypothesis that interactions between an object and its
background context will modulate the neural relationship of shared
visual features (Experiment 2). In this experiment, we combine object
and scene images from the previous experiment to form a new set of
scenes. Across the first two experiments, we use multivoxel pattern
analyses (MVPA) to examine if the processing of scene geometry and
surface properties in PPA are mediated by shared or distinct neuronal
mechanisms, and also predict that the processing of these visual
features in PPA is domain specific to scenes, and thus PPA would
show greater activation when processing the surface properties of
scenes compared with objects.

Finally, we use the fMR-adaptation approach to obtain a sensitive
measure of the relative weighting of geometry and surface properties

solely within scene perception in PPA (Experiment 3). Here, we predict
equivalent releases from adaptation for variations in scene geometry or
surface properties and an interaction (i.e., non-additivity) between the
processing of these features, which would imply that their representa-
tions are not independent. In addition to examining the PPA, in all
experiments we explore how geometry and surface properties con-
tribute to neural representations in regions sensitive to processing
scenes (RSC, OPA), objects (LO), and faces (FFA, OFA).

Materials and methods

Observers

Thirty-six paid observers with normal or corrected-to-normal visual
acuity were recruited from the University of Toronto community,
consisting of ten paid observers (6 male; mean age 26.2 ± 4.92) in
Experiment 1, twelve paid observers (6 male; mean age 25.83 years ±
3.61) in Experiment 2, and fourteen paid observers (6 male; mean age
24.21 ± 3.26) in Experiment 3. All Observers gave informed consent in
accordance with the University of Toronto Ethics Review Board. One
observer in Experiment 3 was removed prior to analyses due to
excessive head motion (i.e., rotation and or translation in excess of
3 mm or 3°, respectively) which could not be motion-corrected within
acceptable limits.

Stimuli and procedure

E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA;
Experiment 1; Experiment 2) and Matlab (MathWorks, Natick, MA;
Experiment 3) were used to control stimulus presentation and collect
behavioral responses. Images for all three experiments were rear-
projected onto a screen in the MRI scanner (subtending 17.1° × 12.8 of
visual angle), and observers viewed stimuli through a mirror mounted
to the head coil directly above the eyes. In Experiment 1, stimuli were
512 unique full-colour 3-dimensional indoor scenes and objects
rendered using Blender 2.0 software (Stichting Blender Foundation,
Amsterdam; Fig. 1A) and created by varying a counterbalanced
combination of scene-shape (circular; square), scene-texture (wood;
brick), object-shape (circular; square), and object-texture (wood;
brick). Textures were heterogeneous within a category (i.e., wood and
brick), such that each category contained multiple exemplars of the
same type of texture, as would be experienced in real-world environ-

Fig. 1. Experimental Stimuli. (A) Examples of stimuli used in Experiment 1. Scenes and objects are defined by their shape (circular vs. square) and texture (wood vs. brick).
Observers attended to the shape or texture of the object or scene, either of which could change while the other was held constant. (B) Examples of stimuli used in Experiment 2. The
stimuli and procedure were identical to Experiment 1, with the exception that objects were placed within scenes. (C) Examples of the stimuli used in Experiment 3. Scenes could vary
across 10 different shapes, and 10 different textures. In Experiment 3, observers attended only to overall changes across images, and did not attend directly to any one particular feature.
For additional examples of the stimuli used in Experiment 3, see Supplementary materials Fig. S1.
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ments (see Fig. 1A). One exemplar was used for each type of shape (i.e.,
circular and square; but see Experiment 3 for results when the number
of texture and shape exemplars were matched). A blocked fMRI
experimental paradigm was used wherein 24 images were presented
in blocks of 20-s each. Each block was preceded by a 12-s fixation
period and a 4-s written instruction to attend to changes in either the
texture or shape of the scene or object in the ensuing block.

In each trial (12 per block, lasting 1666 ms each), two images were
presented for 300 ms (separated by a 200-ms blank interval), and the
task of the observers was to decide if the attended feature (shape or
texture) of the stimulus (scene or object) was the same or different
across the two images, responding during a 1166-ms period following
the onset of the second image (via a response pad placed in the
observer's right hand). Each block contained an equal number of
“same” and “different” trials. Observers were instructed to maintain
central fixation and respond as quickly and as accurately as possible.
Images in each condition were presented randomly within each block.
Each observer took part in 5 runs (7 min 24 s each), and each run
contained a unique and counterbalanced order of 12 stimulus blocks
(i.e., three of each condition: scene-shape; scene-texture; object-shape;
object-texture). Run order was randomized across observers and each
condition (i.e., what was attended, shape or texture) was held constant
per block. For Experiment 2, the procedure was identical, but the
stimuli were combined to create new images containing both scenes
and objects (Fig. 1B), with an object presented in the center of each
scene.

In Experiment 3, 100 unique grayscale 3-dimensional indoor
scenes were generated using Blender 2.0 software (Stichting Blender
Foundation, Amsterdam; Fig. 1C; Supplementary materials Fig. S1).
Stimuli were fully counterbalanced with 10 unique scene shapes, and
10 unique scene textures (i.e., variation in scene shape and scene
texture were matched). Differences in low-level image features (lumi-
nance, contrast, and hue) were controlled using the SHINE toolbox
(Willenbockel et al., 2010). A fast, event-related fMR-adaptation design
was used, wherein 75 trials (6 s each) were presented in each run
(7 min 42 s each), with a total of 5 runs per observer. Observers were
asked to respond whether two consecutively displayed images were, as
a whole, the “same” or different”, without attending to any particular
stimulus dimension. Conditions examined included a “no-change”
condition where neither feature changed (baseline), a “both-change”
condition where both features changed, and two conditions where
either feature could change independently of the other (“same-shape-
different-texture”; “different-shape-same-texture”). In each trial, fol-
lowing an initial fixation of 1-s, two images were displayed (300 ms
each) and were separated by an interstimulus interval of 800 ms.
Following these images, observers responded during a 3600 ms
response window (via a response pad placed in the observer's right
hand). Trial order was counterbalanced across five unique runs, and
the order of these runs was counterbalanced across participants.

Localizer scan

For Experiments 1 and 2, stimuli used to localize object-, scene-,
and face-sensitive areas of cortex were photographs of various scenes,
faces, common objects, and tile-scrambled images. Stimuli were
presented in 16-s blocks of 32 images at a resolution of 375 × 375
pixels (7.8° × 7.8°), and were displayed for 400 ms each, with an
interstimulus interval of 50 ms. Observers fixated on a centrally-
presented black fixation cross, and were instructed to respond with a
button press when the fixation cross changed from black to red
(randomly occurring once or twice per stimulus block). There were 4
blocks for each stimulus category within a run, and there were two
unique run orders. Sixteen-second long fixation periods were presented
after each stimulus block. Each observer took part in three localizer
runs (6-min 40-s each). For Experiment 3, stimuli used to localize
object and scene-sensitive areas of cortex consisted of photographs of

various scenes, faces, common objects, and phase-scrambled versions
of the common objects. A single run consisted of presenting 4 blocks
each of scenes, faces, intact objects, and phase-scrambled objects. Each
stimulus block was 16-s long and contained 20 different images, each
lasting 750 ms and followed by a 50 ms blank period. No images were
repeated within or across blocks in a given run. To ensure attention to
the displays, observers fixated at the center and detected a slight spatial
jitter, occurring randomly in 1 out of every 10 images. Besides the
stimulus blocks, there were also 8-s fixation blocks presented at the
beginning, middle, and end of each run. Following Epstein and
Kanwisher (1998), we used 2 unique and balanced run orders. Each
run lasted 4 min and 40 s. All observers took part in 3 runs of this
localizer.

MRI acquisition

Scanning was performed at the Center for Addiction and Mental
Health using a 3T GE Discovery MR750 whole-body MRI scanner
equipped with an 8-channel head coil. T1-weighted anatomical images
were acquired using a 3D SAG T1 BRAVO spiral pulse sequence
[repetition time (TR), 6736 ms; echo time (TE), 3 ms; inversion time,
650 ms; flip angle 8°, 256 × 256 matrix size, 200 slices, 1 mm isovoxel].
For the functional runs, T2*-weighted images sensitive to blood
oxygenation level-dependent (BOLD) contrasts were acquired using a
spiral pulse sequence (64 × 64 matrix size; field of view 22 cm; TR
2000 ms; TE 30 ms; flip angle 60°; 200 volumes for the localizer runs
in Experiments 1 and 2 and 140 volumes for the localizer runs in
Experiment 3, 134 volumes for the main experimental runs in
Experiments 1 and 2 and 231 volumes for the adaptation runs in
Experiment 3). Thirty-one slices (3.4 mm × 3.4 mm × 5 mm, no gap)
parallel to the anterior and posterior commissure line were collected in
all functional runs.

Univariate data analysis

fMRI data were processed and analyzed using BrainVoyager QX 2.8
(Brain Innovation, Maastricht, the Netherlands). Data preprocessing
included slice acquisition time correction, 3D motion correction,
temporal filtering (linear trend removal and high-pass filtering set at
3 cycles/run), and Talairach space transformation (Talairach and
Tournoux, 1988). Data from the functional localizer was analyzed
using a general linear model (GLM), accounting for hemodynamic
response lag (Friston et al., 1994). Regions of interest (ROIs) can be
seen in Fig. 2. The PPA ROI was defined as a region in the collateral
sulcus and parahippocampal gyrus (see Epstein and Kanwisher, 1998)
whose activation was higher for scenes than for faces and objects (false
discovery rate, q < 0.05; this threshold applies to all functional regions

Fig. 2. Regions of interest. Functionally defined ROIs are shown on the brains of two
representative observers. Talairach coordinates for peak voxels of each ROI in observer
one (PPA – FFA) and two (OFA) are as follows: LPPA, −29, −34, −10; RPPA, 27, −34, −5;
LRSC, −15, −56, 14; RRSC, 14, −59, 17; LOPA, −41, −72, 14, ROPA, 32, −80, 19; LLO,
−45, −80, 0; RLO, 39, −71, 5; LFFA, −43, −36, −17; RFFA, 41, −47, −13; LOFA, −36,
−79, 4; ROFA, 43, −75, −3.
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localized in individual observers; identified in all observers in all
Experiments). In addition, the RSC (see Epstein et al., 2005) and
OPA (also known as transverse occipital sulcus; see Dilks et al., 2013)
ROIs were functionally defined as regions in restrosplenial cortex–
posterior cingulate–medial parietal cortex and transverse occipital
cortex, respectively, whose activations were higher for scenes than for
faces and objects (identified in eleven, and nine, observers, respec-
tively, in Experiment 1, 7 and 9 observers in Experiment 2, and 12 and
13 observers in Experiment 3). In accordance with Grill-Spector et al.
(2000), LO, a sub-division of the lateral occipital complex (LOC), was
defined as a region in the lateral occipital cortex near the posterior
inferotemporal sulcus, with activation higher for objects than for
scrambled objects (identified in all observers in all experiments). The
fusiform face area (FFA) was selected as a control region (as our stimuli
did not contain any faces) and following Kanwisher et al. (1997), this
area was defined as a region in the extrastriate cortex whose activations
were higher for faces than scenes or objects (identified in 11 observers
in Experiment 1, all observers in Experiment 2, and 12 observers in
Experiment 3). As an additional control region, the occipital face area
(OFA) was defined as a region in the inferior occipital gyrus (Gauthier
et al., 2000) whose activations were higher for faces than scenes or
objects (identified in 9 observers in Experiment 1, 11 observers in
Experiment 2, and 11 observers in Experiment 3).

Following the standard ROI-based analysis approach (Saxe et al.,
2006), we overlaid the ROIs onto the data from our main experiment
and extracted time courses from each observer. Peak responses for each
condition were obtained by collapsing the time courses for all of the
conditions and then identifying the time point of greatest signal
amplitude in the average response (Xu and Chun, 2006; Xu, 2010;
Cant and Xu, 2012). This was done separately for each observer in each
ROI, and the resultant peak responses were then averaged across all
observers. The average levels of peak activation (measured in percent
BOLD signal change from baseline fixation) for each condition across
observers were subjected to a 2 (Experiment 1 and 2: Stimulus: object
vs. scene; Experiment 3: Texture: same vs. different) × 2 (Experiment 1
and 2: Feature: texture vs. shape; Experiment 3: Shape: same vs
different) repeated-measures ANOVA (SPSS, Chicago, IL, USA) for
each ROI (PPA, RSC, OPA, LO, FFA, OFA). Planned pairwise compar-
isons (Bonferroni-corrected for multiple comparisons) were then
conducted to compare the processing of texture and shape for both
objects and scenes in each ROI in Experiments 1 and 2, and to compare
same versus different conditions for scene texture and scene shape in
Experiment 3. Left and right hemispheres were combined for each ROI
in all analyses (see Supplementary materials).

Multivoxel pattern analysis (MVPA)

Support vector machine classifiers
Pattern classification was performed in Experiments 1 and 2 with

a combination of in-house software (using Matlab) and the
Princeton MVPA Toolbox for Matlab (http://code.google.com/p/
princeton-mvpa-toolbox/) using a Support Vector Machines (SVM)
classifier (libSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The
SVM model used a linear kernel function and a constant cost
parameter, C = 1, to compute a hyperplane that best separated the
block/condition responses. To test the accuracy of the SVM
classifiers we used a “leave-one-run-out” N-fold cross-validation,
in which a single fMRI run was reserved for classifier testing. We
performed this N-1 cross-validation procedure until all runs were
separately tested, and then averaged across N-iterations in order to
produce a representative classification accuracy measure for each
participant, ROI, and pattern discrimination (Duda et al., 1995).

Multiclass and pairwise discriminations
SVMs are designed for classifying differences between two stimuli

and LibSVM (the SVM package implemented here) uses the so-called

‘one-against-one method’ for classification (Hsu and Lin, 2002). With
the SVMs we performed two complementary types of classification
analyses; one in which the multiple pairwise results were combined in
order to produce multiclass discriminations (distinguishing among all
4 of our condition types) and another in which the individual pairwise
discriminations were examined and tested separately.

The multiclass discrimination approach allowed for an examination
of the distribution of the classifier guesses through visualization of the
resulting ‘confusion matrix’. In a confusion matrix, each row (i)
represents the instances of the actual condition and each column (j)
represents the predicted condition. Their intersection (i, j) represents
the (normalized) number of times a given condition i is predicted by
the classifier to be condition j. Thus the confusion matrix provides a
direct visualization of the extent to which a decoding algorithm
confuses (or correctly identifies) the different classes. All correct
classifications are located in the diagonal of the matrix (with classifica-
tion errors represented by non-zero values outside of the diagonal) and
average decoding performance is defined as the mean across the
diagonal. The values in each row sum to 1 (i.e., 100% classification).
If decoding is at chance levels, then classification performance will be
at 1/4 = 25%. For all multiclass discriminations, we statistically
assessed decoding significance across participants (for each ROI and
condition epoch) using one-tailed t-tests versus 25% chance decoding.
For pairwise discriminations, we statistically assessed decoding sig-
nificance across participants using one-tailed t-tests versus 50% chance
decoding. Importantly, an FDR correction of q ≤ 0.05 was applied to
the pairwise comparisons based on the number of comparisons
examined per ROIs, and for the multiclass discriminations based on
the number of ROIs examined (Benjamini and Hochberg, 1995).

Inputs to the SVM classifier
BOLD percent signal change values for each ROI provided inputs to

the SVM classifier. The percent signal change response was computed
from the time-course activity for the task-evoked responses with
respect to the time-course of a run-based averaged baseline fixation
value, for all voxels in the ROI. The baseline fixation window was
defined as a time point prior to the 4-s instruction period before each
stimulus block (6 s prior to block onset, averaged across all blocks
within an experimental run). For the block-evoked activity we ex-
tracted, for each condition, the average of imaging volumes 3–10 (i.e.,
6–20 s), which are time points encompassing the first peak of the
hemodynamic response until the end of the experimental block. This
windowed-average percent signal change classification approach cor-
responds with that used in recent work using the same technique
(Gallivan et al., 2013, 2014; Lowe et al., 2016). Following the
extraction of each block's activity, these values were rescaled between
−1 and +1 for each voxel pattern within an ROI (Misaki et al., 2010).

Behavioral data analysis
Behavioral performance measures of accuracy and reaction time

were recorded using E-Prime 2.0 software (Experiments 1 and 2) and
Matlab (Experiment 3), and analyzed with SPSS, by performing a 2
(stimulus: object vs. scene) × 2 (feature: texture vs. layout) repeated-
measures ANOVA for Experiments 1 and 2, and a 2 (texture: same vs.
different) by 2 (shape: same vs. different) repeated-measures ANOVA
for Experiment 3, with subsequent pairwise comparisons (all two-tailed
and Bonferroni corrected) conducted based on a priori theoretical
motivation (i.e., examining differences between shape and texture
processing for objects and scenes separately in Experiments 1 and 2,
and examining potential releases from adaptation when scene texture
varied but scene shape was held constant, and when scene shape varied
but scene texture was held constant, in Experiment 3). See
Supplementary material for results of the behavioral analyses for all
three experiments.
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Experiment 1: feature processing in objects and scenes
separately

In Experiment 1, observers viewed either indoor scenes or objects,
separately (Fig. 1A). Each scene and object could change along two
dimensions: shape (circular; square) and texture (wood; brick). Given
previous findings highlighting the influence of both surface properties
(Lowe et al., 2016) and spatial layout (Epstein and Kanwisher, 1998)
on activity in scene-selective cortex, we hypothesize similar univariate
neural activity between scene-texture and scene-shape conditions in
PPA (i.e., equal weighting). We further predict, based on previous
results, increased univariate activity when attending to object-texture
compared with object-shape in PPA (Cant and Goodale, 2007, 2011),
and vice versa in the object-selective LO, which has been shown to
represent higher level object-shape information (Kourtzi and
Kanwisher, 2001). To test the hypothesis that PPA processes surface
properties in a domain specific manner, we examine neural representa-
tions of this visual feature across object and scene perception, predict-
ing that PPA will show increased activity to the surface properties of a
scene over an object. Moreover, to test the prediction that geometry
and surface properties are processed similarly within scene perception
(i.e., are potentially mediated by shared neuronal mechanisms), and
distinctly within object perception, we use multivariate techniques to
explore whether these features can be discriminated from one another
in both objects and scenes. As the stimuli used here were not tailored to
the known functional properties of FFA (Kanwisher et al., 1997) and
OFA (Gauthier et al., 2000), these regions were used as controls (see
Fig. 2 for all ROIs).

Results and discussion

We first examined the univariate response amplitudes (percent
signal change compared to fixation) of ROIs for each condition (scene-
shape; scene-texture; object-shape; object-texture) using 2 × 2 re-
peated-measures ANOVAs with stimulus (object; scene) and feature
(texture; shape) as factors (Fig. 3; collapsing left and right hemispheres
for each region; this applies to all Experiments), and conducted simple
main effects analyses to examine interactions between stimulus
category and feature in each region. We found a significant main effect
of stimulus for all regions except FFA (PPA: F1,9 = 143.98, p < 0.001;
RSC: F1,6 = 381.14, p < 0.001; OPA: F1,8 = 101.42, p < 0.001; LO:
F1,9 = 22.08 p = 0.001; FFA: F1,9 = 0.36 p = 0.566; OFA: F1,9 = 16.17 p
= 0.003), and a main effect of feature for PPA (F1,9 = 24.76, p = 0.001),
LO (F1,9 = 11.00, p = 0.009), and OFA (F1,9 = 6.99 p = 0.027), but not
for the remaining regions (all Fs < 4.59; all ps ≥ 0.061). We observed
significant stimulus-by-feature interactions in all scene-selective re-
gions (PPA: F1,9 = 35.03, p < 0.001; RSC: F1,6 = 9.12, p = 0.023; OPA:

F1,8 = 20.63, p = 0.002), but not in object-selective cortex (LO: F1,9

= 0.06, p = 0.811) or face-selective cortex (FFA: F1,9 = 0.89 p = 0.369;
OFA: F1,9 = 0.28 p = 0.609).

These findings confirm a dissociation between object and scene
processing across scene-selective and object-selective areas of cortex.
In line with our predictions, subsequent planned pairwise comparisons
(two-tailed and Bonferroni-corrected; this applies to all Experiments)
revealed no significant differences between scene-shape and scene-
texture processing in PPA (t9 = 0.17, p = 0.866). Similarly, this was also
observed in RSC (t6 = 1.75, p = 0.131), yet higher BOLD response
for scene-shape over scene-texture was observed in OPA (t8 = 3.09,
p = 0.015). Moreover, consistent with our predictions, analysis of
object-processing revealed significantly higher activation for object-
texture over object-shape in PPA (t9 = 12.61, p < 0.001) but not RSC
(t6 = 1.60, p = 0.170), replicating previous findings (Cant and Goodale,
2007, 2011). We further observed higher activation for object-shape
over object-texture in LO (t9 = 2.30, p = 0.047), as expected. Finally,
higher activation for object-texture over object-shape was also found in
OPA (t8 = 3.15, p = 0.014). This latter result was unexpected given the
sensitivity of OPA to scenes, yet we speculate this finding may speak to
the involvement of OPA in the processing of local elements, which may
contain cues for scene recognition and navigation (Kamps et al., 2016a,
2016b).

Interactions across ROIs were investigated using a 2 (region) by
2 (stimulus) by 2 (feature) repeated-measures ANOVA. This analysis
revealed significant region-by-stimulus interactions for PPA
withRSC (F1,6 = 45.43, p = 0.001), LO (F1,9 = 142.00, p < 0.001),
FFA (F1,9 = 117.08, p < 0.001), and OFA (F1,9 = 134.46 p < 0.001);
for RSC with OPA (F1,5 = 14.68, p = 0.012), LO (F1,9 = 98.15, p <
0.001), FFA (F1,6 = 160.90, p < 0.001), and OFA (F1,6 = 208.34 p <
0.001); for OPA with LO (F1,8 = 118.29, p < 0.001), FFA (F1,8

= 76.99, p < 0.001) and OFA (F1,8 = 122.78 p < 0.001); for LO with
FFA (F1,8 = 19.93, p = 0.002), and for FFA with OFA (F1,9 = 27.81 p
= 0.001). Significant region-by-feature interactions were found for
PPA with RSC (F1,6 = 6.13, p = 0.048), OPA (F1,8 = 5.51, p = 0.047),
and LO (F1,9 = 40.08, p < 0.001); for RSC with OFA (F1,6 = 6.11 p
= 0.048), for OPA with LO (F1,8 = 17.77, p = 0.003); and for LO with
FFA (F1,9 = 50.70, p < 0.001) and OFA (F1,9 = 21.67 p = 0.001). A
significant three-way interaction was found for PPA with LO (F1,9

= 7.51, p = 0.023), FFA (F1,9 = 6.09, p = 0.036), and OFA (F1,9

= 12.34 p = 0.007), and for OPA with OFA (F1,8 = 5.52 p = 0.047)
These results are consistent with previous work demonstrating a
functional dissociation between processing within scene-selective,
object-selective, and face-selective cortex, but also within the scene-
processing network itself (Cant and Goodale, 2007, 2011; Cant and
Xu, 2012, 2015, 2017; Lowe et al., 2016).

Since a null result in a univariate analysis does not necessarily
imply that a given region cannot distinguish between two properties,
we conducted multivariate analyses to examine whether each of our
ROIs could discriminate between stimulus category and feature. The
aims of these analyses were twofold. Firstly, we investigated the extent
to which each ROI could successfully discriminate generally across all
conditions (object shape, object texture, scene shape, scene texture),
and secondly, we conducted a number of pairwise comparisons in order
to directly explore whether these regions could successfully discrimi-
nate between the geometry and surface properties of objects and
scenes. We first extracted multivoxel fMRI activity and used linear
SVM classifiers in each region to create confusion matrices represent-
ing the distribution of classifications (and misclassifications) across
conditions (Fig. 4A). These matrices demonstrate misclassifications in
scene- and object-cortex are largely contained within the same stimulus
category (e.g., scene-texture is more likely to be misclassified as scene-
shape than object-texture). We then examined the extent to which each
of our conditions could be decoded above chance (25%). These multi-
class discriminations revealed classification accuracies that were sig-
nificantly above chance for all ROIs (all ts ≥ 3.21; all ps ≤ 0.005; all qs

Fig. 3. Univariate response amplitudes for Experiment 1. BOLD signal activa-
tion for all conditions (attend scene shape; attend scene texture; attend object shape;
attend object texture) in each ROI. Data are represented as mean ± SEM.
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≤ 0.005), indicating that each region classifies conditions with above-
chance accuracy (Fig. 4B). To investigate these findings in greater
detail, we performed subsequent analyses using planned pairwise-
comparisons corrected for multiple comparisons using the FDR
procedure (q; based on the number of comparisons per ROI) to
examine whether shape and texture could be decoded at greater-
than-chance accuracy (50%) when attending to either objects or scenes,
separately (Fig. 4C).

Findings revealed no significant decoding of scene-shape versus
scene-texture in both PPA and RSC (both ts ≤ 0.58; both ps ≥ 0.29),
replicating previous findings using real-world scene stimuli (Lowe
et al., 2016), and thus provides additional evidence that scene-texture
and scene-shape may be processed similarly in these regions. In
contrast, we found significant decoding of scene-shape versus scene-
texture in OPA (t8 = 2.56, p = 0.017, q = 0.017). Significant
discrimination of these features was not observed in LO (t9 = 1.16, p
= 0.139), nor in FFA (t9 = 1.32, p = 0.110), but it was found in OFA (t9
= 3.44, p = 0.004, q = 0.005). Continuing our analysis, we found
significantly above-chance classification accuracy for object-shape
versus object-texture in PPA (t9 = 2.83, p = 0.010, q = 0.013),
providing mounting evidence consistent with previous univariate
findings that the processing of these object features is dissociated in
PPA (Cant and Goodale, 2007, 2011). Significant decoding of these
object features was found in OPA (t8 = 3.97, p = 0.002, q = 0.010), but
only marginally significant decoding of these features was found in LO
(t9 = 1.76, p = 0.056), and no significant decoding was observed in RSC
(t6 = 1.46, p = 0.098). We found significant decoding in both FFA (t9
= 2.21, p = 0.027, q = 0.045) and OFA (t9 = 2.35, p = 0.022, q = 0.022)
across these conditions. Finally, to ensure a null finding in one of our
main ROIs (e.g., PPA) could not be attributed to a problem with the
classification procedure itself, we conducted control pairwise compar-
isons in which we expected to find significantly above-chance classifi-
cation. Specifically, we examined the classification of scenes versus
objects when holding stimulus feature constant, and found significant
decoding of scene-shape versus object-shape for all regions (all ts ≥

5.25; all ps ≤ 0.001; all qs ≤ 0.001), as well as significant decoding of

scene-texture versus object-texture for all regions (all ts ≥ 2.82; all ps ≤
0.01; all qs ≤ 0.01).

Experiment 2: feature processing in scenes containing an
object

Experiment 1 provides strong evidence that feature processing of a
scene extends beyond spatial features to include surface properties
such as texture, and that these features elicit similar neural activity in
PPA. In other words, the processing of scene texture and scene shape
may be weighted equally in PPA. Scenes rarely exist independently of
objects, however, and previous research has indicated object-proces-
sing may have an interactive relationship with scene-processing
(Joubert et al., 2007; Mullin and Steeves, 2013) and that geometry
and surface properties may influence this relationship (Lowe et al.,
2015). To examine this interaction (i.e., the presence of a surrounding
scene influencing object representation, and vice versa), we expanded
upon the findings of Experiment 1 by examining the processing of
shape and texture while observers viewed new images depicting an
object placed within a scene (Fig. 1B). This allowed us to attempt to
replicate the findings from Experiment 1, but importantly, to test the
prediction that shared visual object and scene features are not
processed independently, but interact across stimulus categories.
Specifically, since the surface properties of a scene can exhibit global
precedence over the surface properties (but not the geometry) of an
object within that scene (Lowe et al., 2015), we might observe
decreased sensitivity to object surface properties relative to the
processing of object geometry in PPA (e.g., equivalent activation for
object texture and shape, or less activation for object texture). This
would differ from the results in Experiment 1, in which objects were
not presented within scenes.

Results and discussion

Consistent with Experiment 1, we examined univariate response
amplitudes in each region by conducting a 2 × 2 repeated-measures
ANOVA with stimulus (object; scene) and feature (texture; shape) as
factors (Fig. 5), and found significant main effects of stimulus for all
regions except one of our control regions, FFA (PPA: F1,11 = 88.40, p <
0.001; RSC: F1,10 = 16.74, p = 0.002; OPA: F1,10 = 110.83, p < 0.001;
LO: F1,11 = 11.62 p = 0.006; FFA: F1,10 = 2.20 p = 0.169; OFA: F1,10

= 70.96 p < 0.001), but only a main effect of feature for LO (PPA: F1,11

= 2.25, p = 0.162; RSC: F1,10 = 0.004, p = 0.952; OPA: F1,10 = 0.334, p
= 0.576; LO: F1,11 = 12.53, p = 0.005; FFA: F1,10 = 3.361 p = 0.097;
OFA: F1,10 = 0.15 p = 0.711). Interestingly, the stimulus-by-feature
interaction was non-significant in all regions (all Fs < 3.43; all ps ≥
0.094), which differs from the results of Experiment 1, where scenes
and objects were presented separately. Subsequent pairwise compar-

Fig. 4. (Above) confusion matrices for Experiment 1. (A) Confusion matrices
(chance = 0.25) for Experiment 1 generated from multiclass discriminations showing the
distribution of classification errors across all four conditions (SS = Scene Shape; ST =
Scene Texture; OS = Object Shape; OT = Object Texture) for each ROI. The average
classifier response proportions across participants are shown. When decoding is perfect,
the confusion matrix will have a diagonal containing values of 1 and the rest of the matrix
will be 0. Note that the average decoding performance (shown in Fig. 4B) is defined as the
mean across the diagonal. To highlight differences in decoder performance, the matrices
have been rescaled (rather than being scaled from 0 to 1) (Below) Multivariate
results for Experiment 1. (B) Overall classification accuracy (chance = 25%; dashed
line) of all four conditions for each ROI. (C) Decoding accuracy (chance = 50%; dashed
line) for scene feature discriminations (shape vs. texture), object feature discriminations
(shape vs. texture), shape category discriminations (scene vs. object) and texture category
discriminations (scene vs. object) for each ROI. Data are represented as mean ± SEM.
*p < 0.05, **p < 0.01, ***p < 0.001, all p-values shown have been FDR-corrected.

Fig. 5. Univariate response amplitudes for Experiment 2. BOLD signal activa-
tion for all conditions (attend scene shape; attend scene texture; attend object shape;
attend object texture) in each ROI. Data are represented as mean ± SEM.
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isons found that activation levels for scene-shape and scene-texture did
not differ in any scene selective region (PPA: t11 = 0.35, p = 0.734;
RSC: t10 = 0.19, p = 0.855; OPA: t10 = 1.00, p = 0.341), and neither
did activation for object-shape and object-texture in PPA (t11 = 1.69, p
= 0.118). In contrast, levels of activity for these features were dissimilar
in LO, with significantly higher activity observed when attending to
object-shape compared with object-texture (t11 = 2.53, p = 0.028), as
predicted. In line with our predictions and consistent with the results of
Experiment 1, these findings reveal that PPA exhibits similar BOLD
responses across scene features. In contrast to the results of
Experiment 1, however, we observed equal sensitivity to the processing
of object-texture and object-shape in PPA, which is consistent with our
prediction regarding object-scene interactions.

To explore these interactions more directly, we conducted a 2
(stimulus: object vs. scene) by 2 (feature: shape vs. texture) by 2
(Experiment: Experiment 1 vs. Experiment 2) mixed-design ANOVA
for PPA across Experiments 1 and 2. Significant main effects of
Experiment (F1,20 = 5.19, p < 0.034) and stimulus were observed
(F1,20 = 246.85, p < 0.001), along with a significant stimulus-by-
Experiment interaction (F1,20 = 52.05, p < 0.001). Moreover,
a significant main effect of feature was found (F1,20 = 16.41,
p = 0.001), but the feature-by-Experiment interaction was not sig-
nificant (F1,20 = 3.02, p = 0.098). A significant stimulus-by-feature
interaction was found (F1,9 = 18.12, p < 0.001), and importantly, a
significant three-way interaction was also observed (F1,20 = 5.89,
p = 0.025), warranting further analyses. Subsequent pairwise compar-
isons revealed no significant differences between the representation
of either the geometry (t20 = 0.43, p = 0.671) or surface properties (t20
= 0.51, p = 0.611) of a scene across experiments. In contrast, we found
a significant difference between the representation of the geometry (t20
= 4.98, p < 0.001) and surface properties (t20 = 4.13, p = 0.001) of an
object across experiments. Not surprisingly, higher response ampli-
tudes in PPA for both of these object features was observed when the
object was placed within a scene. But importantly, these results
demonstrate that the representation in PPA changes when objects are
placed within the context of a scene (specifically, the representation of
object, but not scene, features changes).

Significant region-by-stimulus interactions were found for PPA with
OPA (F1,10 = 17.293, p = 0.002), LO (F1,11 = 67.07, p < 0.001), FFA
(F1,10 = 126.45, p < 0.001), and OFA (F1,10 = 242.61 p < 0.001); for
RSC with OPA (F1,9 = 21.25, p = 0.001), LO (F1,10 = 35.46, p < 0.001),
FFA (F1,10 = 20.52, p = 0.001), and OFA (F1,9 = 58.17 p < 0.001); for
OPA with LO (F1,10 = 61.81, p < 0.001), FFA (F1,9 = 74.95, p <
0.001), and OFA (F1,9 = 170.46 p < 0.001), and for FFA with OFA (F1,9

= 95.96 p < 0.001). Significant region-by-feature interactions were
found for PPA with LO (F1,11 = 35.60, p < 0.001), for RSC with LO
(F1,10 = 10.60, p = 0.009), for OPA with LO (F1,10 = 15.42, p = 0.003),
and for LO with FFA (F1,10 = 25.89, p < 0.001). A significant three-way
interaction was found for RSC with OPA (F1,9 = 12.24, p = 0.007) and
OPA with LO (F1,10 = 7.69, p = 0.020) and OFA (F1,9 = 19.00
p = 0.002). Taken together, the results from Experiments 1 and 2
demonstrate that scene-, object-, and face-sensitive regions of cortex
process the same visual input in appreciably different ways, and speak
to varying levels of functional specificity within ventral visual cortex
(Cant and Goodale, 2007, 2011; Cant and Xu, 2012, 2015; Lowe et al.,
2016).

To further explore the processing of geometry and surface proper-
ties across ventral-visual cortex, we conducted a number of multi-
variate analyses consistent with Experiment 1. After creating confusion
matrices (Fig. 6A), multiclass discriminations revealed classification
accuracies that were significantly above chance (25%) for all ROIs (all
ts ≥ 4.70; all ps ≤ 0.001, all qs ≤ 0.001), indicating that each region
classifies conditions with above-chance accuracy (Fig. 6B). To investi-
gate these findings in greater detail, we performed subsequent analyses
using planned pairwise-comparisons to examine whether shape and

texture could be decoded at greater-than-chance accuracy (50%) when
attending both objects and scenes, separately (Fig. 6C). Critically, and
consistent with the results of Experiment 1, we found no evidence for
significant discrimination of scene-shape and scene-texture conditions
in both PPA and RSC (both ts ≤ 1.05; both ps ≥ 0.159), suggesting
these features are processed similarly within these regions. In contrast,
we found significant decoding of scene-shape versus scene-texture in
OPA (t10 = 2.09, p = 0.031, q = 0.031), and observed similar results
in LO (t11 = 2.15, p = 0.027, q = 0.027). We further found no difference
across these conditions in one control region, FFA (t10 = 0.88,
p = 0.201), but did find a difference in OFA (t10 = 3.08, p = 0.006,
q = 0.008).

We next examined the decoding of object-shape versus object-
texture, and found significantly above-chance classification accuracy in
PPA (t11 = 4.50, p < 0.001, q = 0.001), despite similar univariate
response amplitudes. These results confirm a dissociation of these
object features in PPA consistent with previous findings (Cant and
Goodale, 2007, 2011), and further highlight the advantage of an
approach using both univariate and multivariate analyses: A null result
in univariate response does not necessarily imply a null multivariate
result. Thus, examining both enabled us to better characterize the
relationship between the weighting of visual features and the degree to
which they are represented by shared or distinct neuronal populations.
We further observed significant decoding of these object features in
OPA (t10 = 3.68, p = 0.002, q = 0.003) and LO (t11 = 4.10, p < 0.001,
q = 0.001), but not in RSC (t10 = 1.60, p = 0.070), FFA (t10 = 0.64,
p = 0.267), and OFA (t10 = 0.84, p = 0.210). Finally, we found
significant decoding of scene-shape versus object-shape in all regions
(all ts ≥ 3.90; all ps ≤ 0.002, all qs ≤ 0.003) except FFA (t11 = 1.86,
p = 0.046, q = 0.093). For the decoding of scene-texture versus object-
texture, we found significant classification in all regions (all ts ≥ 3.72;
all ps ≤ 0.002, all qs ≤ 0.004). These latter sets of results demonstrate
that any null result in decoding accuracy (e.g., scene shape vs. scene
texture in PPA) cannot be explained by imperfections in the classifica-
tion algorithm itself.

Fig. 6. (Above) confusion matrices for Experiment 2. (A) Confusion matrices
(chance = 0.25) for Experiment 2 generated from multiclass discriminations showing the
distribution of classification errors across all four conditions (SS = Scene Shape; ST =
Scene Texture; OS = Object Shape; OT = Object Texture) for each ROI. The average
classifier response proportions across participants are shown. When decoding is perfect,
the confusion matrix will have a diagonal containing values of 1 and the rest of the matrix
will be 0. Note that the average decoding performance (shown in Fig. 6c) is defined as the
mean across the diagonal. To highlight differences in decoder performance, the matrices
have been rescaled (rather than being scaled from 0 to 1). (Below)Multivariate results
for Experiment 2. (B) Classification accuracy (chance = 25%; dashed line) of all four
conditions for each ROI. (C) Decoding accuracy (chance = 50%; dashed line) for scene
feature discriminations (shape vs. texture), object feature discriminations (shape vs.
texture), shape category discriminations (scene vs. object) and texture category dis-
criminations (scene vs. object) for each ROI. Data are represented as mean ± SEM. *p <
0.05, **p < 0.01, ***p < 0.001, all p-values shown have been FDR-corrected.
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Experiment 3: fMR-adaptation of scene features

The results of the first two experiments suggested that the proces-
sing of geometry and surface properties are weighted equally in scene
representation, and are possibility mediated by shared neuronal
mechanisms. To provide an additional test of this hypothesis, we
utilized a fast event-related fMR-adaptation paradigm, which allowed
us to examine the neural representation of one feature (e.g., scene
texture), independent of changes in a second feature (e.g., scene
shape). If scene shape and scene texture are not weighted equally in
PPA, then changing each feature in isolation should result in signifi-
cantly different releases from adaptation (compared to a no feature
change baseline). If these features are weighted equally, however, then
we should observe equivalent releases from adaptation. Based on the
results from the previous experiments, we predict the latter scenario.
Moreover, by examining potential interactions between scene shape
and scene texture processing, we are able to assess whether these
features are represented additively or non-additively. Given our pre-
vious results suggesting equal weighting of these features in PPA
(mediated by potentially shared underlying neuronal mechanisms),
we predict an interaction (i.e., non-additivity) between the processing
of these features, which would imply that their representations are not
independent in PPA.

Furthermore, previous work has shown that goal-states and atten-
tional task demands directly influence activity in ventral visual cortex
(Harel et al., 2014; Lowe et al., 2016). In addition to this potential
influence, there is strong evidence to suggest that scene perception may
be impacted by lower-level stimulus properties such as colour (Oliva
and Schyns, 2000; Steeves et al., 2004; Goffaux et al., 2005; Castelhano
and Henderson, 2008). Together, these findings raise the possibility
that the results of our previous experiments, which utilized full-colour
stimuli and manipulated attention to particular stimulus features, may
be partially explained by these factors. Thus, we controlled for these
potential caveats by examining the response properties of ventral-
stream regions when observers were not explicitly attending to a
particular stimulus dimension, but instead were performing a more
general same-different judgement (Fig. 1C). We focus this investigation
exclusively on scenes to avoid potential modulation by interactions
between objects and scenes (see Experiment 2). Additionally, we
controlled for low-level image properties by using grayscale scenes
and then processing these images by using the SHINE toolbox
(Willenbockel et al., 2010), which equates low-level image attributes
across images by normalizing luminance, contrast, and hue.

Finally, it is possible that the equal univariate activation for scene
shape and scene texture in PPA in Experiments 1 and 2 resulted from
unmatched variation across these features. That is, because we used
only two instances of scene shape (i.e., round vs. square), but many
instances of scene texture (i.e., many different types of brick and wood
textures), blocks where participants attended to scene shape would
result in more adaptation (i.e., less activation) compared with blocks
where they attended to scene texture. If the representation of these
features is not equally weighted in PPA (i.e., attending to scene shape
normally elicits greater activation then attending to scene texture),
then over adapting scene shape compared with scene texture would
give the appearance of equivalent univariate activation and thus equal
weighting. To investigate this possibility, we matched the variation
across scene geometry and texture by using ten different scene-shapes
that could each be rendered in ten different scene-textures. If equiva-
lent releases from adaptation are observed when changing scene shape
and scene texture independently, then the results of Experiments 1 and
2 cannot be explained by unmatched variation across these features.

Results and discussion

fMR-adaptation to geometry and surface properties was ana-
lyzed using a 2 × 2 repeated-measures ANOVA with shape (same;

different) and texture (same; different) as factors (Fig. 7).
Importantly, this design allowed us to examine the interaction
between scene shape and texture processing, but similar results
(with regard to releases from adaptation for variations in scene
shape or scene texture) were obtained when we used a one-way
repeated measures ANOVA with the factor condition (no change vs.
same shape, different texture vs. different shape, same texture vs.
both change) to analyze the data. Results from the 2 × 2 analysis
revealed a significant main effect of shape for PPA (F1,12 = 8.22,
p = 0.014), RSC (F1,11 = 8.13, p = 0.016), and LO (F1,12 = 16.59,
p = 0.002), but not for OPA (F1,12 = 1.04, p = 0.328) or face-
selective regions (FFA: F1,11 = 1.28, p = 0.283; OFA: F1,10 = 0.01 p
= 0.928). In addition to a main effect of shape, a main effect of
texture was found in PPA (F1,12 = 8.21, p = 0.014), but not the
remaining regions (all Fs < 3.90; all ps ≥ 0.074). Significant shape-
by-texture interactions were found in PPA (F1,12 = 14.55,
p = 0.002), OPA (F1,12 = 16.90, p = 0.001), and FFA (F1,11

= 8.00, p = 0.016), but not the remaining regions (all Fs < 4.56;
all ps ≥ 0.058). Next, we conducted planned pairwise comparisons
to examine fMR-adaptation effects across conditions. Compared to
the no-change condition, the same-shape-different-texture condi-
tion resulted in a release from adaptation for all regions (all ts ≥

2.21; all ps ≤ 0.047), except OFA (t10 = 1.79, p = 0.104). Similarly,
the different-shape-same-texture condition showed a release when
compared to the no-change condition in all regions except FFA and
OFA (PPA: t12 = 5.61, p < 0.001; RSC: t11 = 2.69, p = 0.021; OPA:
t12 = 3.40, p = 0.005; LO: t12 = 4.20, p = 0.001; FFA: t11 = 1.46, p =
0.173, OFA: t10 = 1.63, p = 0.135).

Interactions between regions were analyzed using a 2 (region) by 2
(shape) by 2 (texture) repeated-measures ANOVA. Significant region-
by-shape interactions were found for PPA with FFA (F1,11 = 7.16,
p = 0.022), for RSC with FFA (F1,11 = 9.15, p = 0.012), for OPA with
FFA (F1,11 = 7.01, p = 0.022) and for LO with FFA (F1,11 = 7.36,
p = 0.020). Significant region-by-texture interactions were found for
PPA with RSC (F1,11 = 4.91, p = 0.049) and LO (F1,12 = 6.80,
p = 0.023), and for RSC with FFA (F1,11 = 4.90, p = 0.049). No
significant three-way interactions were found.

Finally, we should note that despite controlling for multiple low-
level visual properties in our stimulus set (e.g., colour, luminance,
contrast), it is likely that some low-level differences persist. For
example, changing scene shape in our stimuli, while keeping scene
texture constant, produced low-level changes in monocular depth cues
from surface properties. Thus, neural responses in the different-shape-
same-texture condition likely result from a combination of differences
in scene shape and differences in low-level depth cues from texture. We
observed equivalent releases from adaptation across all ‘change’
conditions, however, and the adaptation results are consistent with
the results from the previous two experiments. Together, this makes it
unlikely that differences in low-level properties alone would account for

Fig. 7. fMR-Adaptation response amplitudes for Experiment 3. Levels of
adaptation across conditions (no change; same-shape-different-texture; different-
shape-same-texture; both change) for each ROI. Data are represented as mean ± SEM.
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a significant proportion of the neural response in the different-shape-
same-texture condition, especially since numerous studies have found
robust sensitivity of the PPA to variations in scene shape (e.g., Epstein
and Kanwisher, 1998). Nevertheless, it is possible that changes to
global scene shape and layout in previous studies were correlated with
changes to low-level monocular depth cues from surface properties, as
they were in the different-shape-same-texture condition here. Future
studies are thus required to better understand the perceptual and
neural impact of covariations in different scene features. We would
contend, however, that the contribution of depth-from-texture infor-
mation to these results is not inconsistent with our general conclusion
that both geometry and surface properties contribute to scene repre-
sentation in PPA.

General discussion

Our findings indicate that the scene-selective PPA responds equally
in strength to the surface properties and geometry of a scene, and these
features could not be discriminated from one another. In object and
scene perception, evidence revealed preferential sensitivity to an
object's shape within the object-selective LO, but the opposite was
true for these object properties within the PPA when objects were
presented in isolation (Experiment 1), suggesting that the PPA may be
particularly sensitive to processing surface properties. An interaction
between objects and scenes, however, modulated this relationship
within the PPA such that the surface properties and geometry of
objects were processed with similar sensitivity (i.e., similar univariate
response amplitudes) when objects were presented within scenes
(Experiment 2), despite demonstrating distinct underlying neural
representations (i.e., multivariate spatial patterns of activation).
Furthermore, varying scene geometry and surface properties indepen-
dently of each other led to equivalent releases from adaptation in PPA
(Experiment 3). Together with the findings that PPA can discriminate
geometry and surface features of objects but not scenes, this evidence
suggests that the processing of scene geometry and surface properties
are weighted equally and may share similar underlying neuronal
mechanisms in PPA, which jointly contribute to the construction of
scene identity. The present findings also provide evidence that the
processing of surface features in PPA may be mediated by domain-
specific, rather than domain-general mechanisms, emphasizing the
importance of this property for scene perception. Evidence across three
experiments further highlights how these global scene properties are
processed in the broader scene-processing network, albeit in ways
which are dissociated from each other, suggesting a complementary
relationship between regions in this network for the purposes of
perceiving and navigating the world around us.

Neural representation of geometry and surface properties

While extensive evidence has supported a primary role for the PPA
in the encoding of spatial information (Epstein and Kanwisher, 1998;
Epstein et al., 2003; Kravitz et al., 2011; Park et al., 2011), there is
considerably less research investigating the encoding of surface in-
formation within this region. In anticipation of the present neural
findings, however, behavioral results have implicated surface charac-
teristics such as colour and texture as being instrumental in mediating
early-stage processes responsible for successful scene recognition
(Schyns and Oliva, 1994; Oliva and Schyns, 2000; Goffaux et al.,
2005; Castelhano and Henderson, 2008). Similarly, PPA activation in
an individual with profound visual form agnosia was modulated by the
presence of appropriate scene colour (Steeves et al., 2004), and a case
of topographical disorientation (wayfinding difficulties) related to
landmark agnosia has revealed that geometry and surface properties
may interact and jointly contribute to scene perception (Robin et al.,

2017). Converging neuroimaging results have further shown that the
surface and material properties of objects are processed in regions
overlapping with scene-selective areas of parahippocampal cortex in
humans (Peuskens et al., 2004; Cant and Goodale, 2007, 2011), and
evidence has demonstrated sensitivity to both object and scene
material properties in nonhuman primate visual cortex, including
areas selective to scene processing (Kornblith et al., 2013; Goda
et al., 2014). Surface properties may play a meaningful role in humans’
ability to distinguish one scene from another. In the present study, by
using strictly-controlled environments which allow for the direct
comparison of visual features, we demonstrate that scene-selective
cortex responds just as strongly to distinctive surface properties as it
does to geometry. Together with previous findings, these results raise a
question of how multiple cues are used to construct the visual world
around us across inherently complex and vastly different environ-
ments.

One account to explain how multiple cues are utilized in scene
perception may include the role of diagnostic features and goal states
(Lowe et al., 2016). In fact, an existing behavioral scene recognition
framework centers on the notion of feature diagnosticity: the idea that
specific visual cues are used for specific types of categorizations and an
interaction between task demands and available visual information can
explain how different cues are used to recognize scenes (Oliva and
Schyns, 1997). Thus, for a complete view of scene understanding, it is
necessary to account for both the contributions of diverse scene
properties and differing observer goals (Lowe et al., 2016; Malcolm
et al., 2016). Altering diagnostic aspects of a scene may in turn alter
place information responsible for perceived novelty and the subsequent
encoding of a scene in memory, consistent with findings suggesting the
PPA is involved in encoding novel place information in memory
(Epstein et al., 1999). Surface properties may represent the unique
identity of a scene in much the same way that geometry does, yet this
representation is dependent on the context in which the environment is
perceived. The strongest empirical support for this account lies in the
asymmetrical response of PPA to visual features across real-world
scene environments. Building on the observation that natural, com-
pared with manmade, environments typically contain large distinctive
surface areas useful for recognition (Rao and Lohse, 1993; Loschky
et al., 2010), evidence has shown that neural activity in PPA associated
with attending to diagnostic surface properties in real-world scenes was
higher in natural than manmade environments, while the opposite was
found for geometry (Lowe et al., 2016). Here, we would argue that PPA
may not necessarily be responsible for the selection of diagnostic
information, but rather responds in accordance with top-down me-
chanisms to facilitate scene recognition.

An alternative explanation for our findings may lie in the sensitivity of
PPA to low-level visual statistical changes, including those elicited by
changes in both spatial structure and surface properties (e.g., monocular
cues to depth). This view would deem PPA an area purely devoted to
processing the low-level visual statistics of a scene. Real-world scenes
contain a high degree of statistical regularity (Torralba and Oliva, 2003;
Oliva and Torralba, 2001) and evidence has demonstrated that PPA, and
scene-selective cortex more generally, is sensitive to processing low-level
image features such as high spatial frequency content (Rajimehr et al.,
2011; Watson et al., 2016). This may help to explain how regions
distributed across scene-selective cortex show similar response ampli-
tudes to changing features (both spatial and non-spatial). Yet given
findings that (1) PPA plays a more direct role in humans’ ability to
categorize real-world scenes compared with areas of early visual cortex
(Walther et al., 2011), (2) PPA exhibits higher activation for object-texture
over object-shape and vice-versa in LO, and (3) the functional dissocia-
tions between PPA and control regions (FFA and OFA) observed here, we
believe that appealing to the processing of low-level features alone is
unlikely to explain the present series of results.
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Interactions across object and scene perception

An intriguing finding from the present study concerns the modulation
of activity in PPA by the presence of an object within a scene. Specifically,
attention to object texture resulted in greater activation in PPA compared
with attention to object shape when scenes and objects were presented
separately (Experiment 1), but this difference was weakened and was no
longer significant when scenes and objects were presented together
(Experiment 2). Previous behavioral research has demonstrated an
interaction between the processing of shared visual features (i.e., geome-
try and surface properties) across object and scene perception (Lowe et al.,
2015), and neuroimaging investigations have further highlighted a role for
object-selective cortex in modulating activity within PPA (Mullin and
Steeves, 2013; Rafique et al., 2015). These findings emphasize that feature
perception in PPA is not static, but dynamic and dependent on the
contextual relationship between the surrounding environment and the
objects within it. The exact nature of the object-scene interaction observed
in this study is unclear. Moreover, the general pattern of univariate results
across Experiments 1 and 2 was qualitatively similar. As such, we hesitate
to make strong conclusions regarding the nature of object-scene interac-
tions from the present results. Factors such as ease of figure-ground
segmentation, object size, location of the object within the scene, and
congruent versus incongruent relationships between scene and object
geometry or surface properties may all play a role in explaining object-
scene interactions specifically and our results more generally. At the very
least, the results of the present study represent a first step in establishing
the finding that placing an object within a scene modulates object-related,
but not scene-related activity in PPA. The degree to which this finding is
explained by the various factors described above, and whether scene-
related activity can be modulated by the presence of an object, are
interesting empirical questions that deserve further study.

Interactions between geometry and surface properties

Visual features within our local visual environment can interact to
support a common goal. For instance, surface properties (on both
objects and scenes) may contribute to the perception of spatial
information through cues provided from depth and contours
(Torralba and Oliva, 2003), as well as edge information (Renninger
and Malik, 2004), while geometric features may provide boundary
information utilized in texture segmentation (Mohan and Nevatia,
1992). Support for the idea that geometry and surface properties are
often used to accomplish a common goal comes from the results of
Experiment 3, where the processing of scene shape and scene texture
was found to be non-additive. This suggests that these features are not
represented independently in PPA. For active navigation, surface
properties provide affordance-related information pertaining to how
an observer should move through an environment, and boundaries
provided from geometric cues are similarly critical for navigation (e.g.,
obstacle avoidance). Indeed, how could an individual efficiently
navigate across a landscape without knowledge of the material
differences between snow and ice, or sand and grass, and the most
efficient path in space to move from one place (i.e., the origin) to
another (i.e., the goal)? The results presented here suggest that neural
representations of these features may not be spatially independent
within the PPA, but interestingly, there is some evidence to suggest that
these features may be temporally distinct. For instance, electrophysio-
logical evidence has suggested differences in the processing of edge-
based and surface information for the purposes of natural scene
perception (Fu et al., 2016).

Interactions between neural and behavioral results

We observed consistent neural evidence that the representation of
scene shape and scene texture are weighted equally in PPA (all 3
Experiments), yet we also found evidence that attention to these

features elicited different behavioral responses (for Experiments 1
and 2, but not 3; see Supplementary materials for all behavioral
results). How can these differences be reconciled? First, behavioral
differences in scene texture discriminations in Experiments 1 and 2 did
not translate into greater activation for the scene texture condition
(compared with the scene shape condition) in these Experiments,
which suggests that the allocation of attention was not disproportio-
nately unbalanced across these conditions. Indeed, if attentional
demands had been greater in the scene texture condition, then we
would have expected to find some evidence of higher activation in this
condition compared with the scene shape condition (i.e., Murray and
Wojciulik, 2004), but we did not. Second, the pattern of neural results
across all three experiments was very similar (e.g., no univariate
difference in response amplitude, or multivariate difference in decod-
ing accuracy, between the processing of scene shape vs. scene texture in
PPA), despite differences in behavioral results (a difference in proces-
sing scene shape vs. scene texture in Experiments 1 and 2, but not 3).
Third, previous research exploring the impact of task difficulty on
neuronal representations has found evidence for a dissociation between
manipulations of task difficulty and processing in ventral visual areas,
including PPA (Xu et al., 2007).

However, given that previous research has revealed that the type of
behavioral task used can impact neuronal representations in ventral
occipito-temporal cortex (Harel et al., 2014; Lowe et al., 2016), as well
as empirical evidence that neuronal activity is causally related to
behavioral perception (e.g., Mégevand et al., 2014), it is not prudent
to completely dismiss potential interactions between neural and
behavioral results in the present study. Of course, at some level of
representation, neuronal processing leads to changes in behavioral
responses (and vice versa). Given this, and the importance of having an
equal allocation of attentional resources when comparing different
types of feature-selective processing, future research should examine
the processing of shape and texture in both object and scene perception
(both separately and in combination) in greater detail. Together with
the present results, these new studies will increase our understanding
of relationships between neural and behavioral processing in scene-
and object-selective cortex.

Investigating the scene-processing network

Our results have also revealed functional dissociations within the
scene-processing network, warranting consideration of these regions.
Recent investigations have demonstrated the causal involvement of
OPA in boundary perception (Julian et al., 2016), and have suggested
that this region may be involved in representing the local elements of a
scene, and first-person perspective for visually-guided navigation
(Kamps et al., 2016a, 2016b). In the present study, we see evidence
for dissociations between PPA and OPA across experiments: OPA
showed greater sensitivity to the processing of scene geometry
(Experiment 1), and was able to discriminate scene geometry from
surface properties across the first two experiments. Together, these
results suggest that scene geometry and texture are processed distinctly
within OPA, and that this region may be particularly sensitive to the
processing of scene geometry. The dissociable processing of these
features with PPA may reflect the involvement of OPA in representing
geometry for the purposes of local boundary perception, but further
research is necessary to test these ideas directly.

While our results indicate that RSC was more similar to PPA
overall, some dissociations and interactions across these regions high-
light their differences. For example, across experiments, while both
regions could not discriminate scene features, an inverse relationship
was observed in object perception wherein PPA was able to discrimi-
nate objects features, yet this was not the case in RSC. How these
results translate to the involvement of these regions in scene percep-
tion, recognition, and navigation warrant further investigation.
Moreover, these results highlight the differences across these regions

M.X. Lowe et al. NeuroImage 157 (2017) 586–597

595



in feature-processing, and provide stronger evidence for the role of PPA
in processing surface properties: While PPA may be more sensitive to
processing the surface properties of an object over its shape, RSC does
not show this sensitivity, but may process these features more
generally. Together, these results emphasize the importance of exam-
ining these three scene-selective regions in conjunction to explore their
contributions to visual perception.

Investigating the face-processing network

Our results reveal an interesting dissociation within the face-
processing network: While FFA could not discriminate between scene
features in either of our first two experiments, we found the opposite
was true for OFA. In addition, neither of these regions showed a
significant release from adaptation to changes in scene geometry in
Experiment 3, but FFA showed a release from adaptation to changes in
scene texture. This finding in FFA was unexpected given the stimuli
were scenes, yet previous work has indicated that FFA may show
sensitivity to both shape and texture/material properties (Cant and
Goodale, 2007, 2011), which is consistent with studies that have
demonstrated sensitivity to shape (Merigan, 1996) and texture
(Merigan, 2000) in regions along the fusiform gyrus. Moreover, the
sensitivity to shape observed along the fusiform gyrus reported
previously may have fallen outside of the functional borders of FFA
(moving in to territory occupied by LOC, specifically, the posterior
fusiform gyrus) and thus we did not observe this result in the present
study.

With regard to OFA, this region has shown sensitivity to changes in
the physical appearance of a face without changes in identity
(Rotshtein et al., 2005), and has been proposed to act as the first stage
of a cortical network for face processing by extracting feature and part-
based information (Pitcher et al., 2011). Together, these findings may
help to explain sensitivity of this region to visual feature processing.
When we compare LO and OFA, we see both similarities (e.g., greater
sensitivity to objects compared with scenes) and dissimilarities (e.g.,
release from adaptation for shape in LO but not OFA). Dissociations
are expected given their functional roles in object- and face-processing,
respectively, but their similarities could be due to their physical
proximity within the ventral stream, and their roles in extracting local
visual feature information. Indeed, these regions may utilize similar
information (i.e., shape and texture) for different purposes, but future
research should explore these similarities and dissociations in greater
detail.

Conclusions

In summary, our findings demonstrate that PPA responds just as
strongly to changes in the surface properties of a scene as it does to
changes in spatial structure. Moreover, neural responses to these scene
features could not be discriminated from one another in PPA, despite
significant discrimination of these features in object perception. We
further observed greater responses to scene-texture compared with
object-texture in PPA, regardless of whether scenes and objects were
presented separately or together. Interestingly, while PPA showed
greater sensitivity to processing texture compared with shape in object
perception when objects were viewed independently of scenes, an
interaction across object and scene perception altered this relationship,
wherein we observed equal sensitivity to these properties when objects
were perceived in the context of a scene. We conclude that texture
processing in PPA (and scene-selective cortex more generally) may be
mediated by domain-specific, rather than domain-general mechanisms,
and the representations of scene geometry and surface properties are
weighted equally in PPA, with their processing potentially mediated by
similar underlying neuronal mechanisms.
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