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Scenes are constructed from multiple visual features, yet previous research investigating scene processing has
often focused on the contributions of single features in isolation. In the real world, features rarely exist indepen-
dently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and
pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic glob-
al scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the
novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies
according to their diagnostic relevance across scene categories and task demands. Our results show for the first
time that scene representations are driven by interactions between multiple visual features and high-level
scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature
diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding
methods revealed results consistent with univariate findings, but also evidence for an interaction between
high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings
suggest visual feature representations are not distributed uniformly across scene categories but are shaped by
task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible repre-
sentation of the environment by integrating multiple diagnostically relevant visual features, the nature of
which varies according to the particular scene being perceived and the goals of the observer.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Howdoes the brain process the environment aroundus? Since the ini-
tial description of the scene-selective parahippocampal place area (PPA;
Epstein and Kanwisher, 1998), investigations have sought to answer
this question by attempting to clarify the nature of the neural representa-
tions in this region. Much of this research has revealed a primary role for
PPA in the encoding of spatial features within a scene, such as structural
geometry or layout (Epstein and Kanwisher, 1998; Epstein et al., 2003),
spatial boundary (Park et al., 2011), and spatial depth (Kravitz et al.,
2011). Conversely, recent studies support the notion that its neural repre-
sentations extend beyond spatial features and include the encoding of
non-spatial contextual associations of objects (Bar et al., 2008), high-
level conceptual scene categories (Walther et al., 2009; 2011; Dilks
et al., 2011), and surface texture and material properties (Peuskens
et al., 2004; Cant and Goodale, 2007; 2011). In order to better understand

scene representation, however, it is not only necessary to understand the
contributions of individual features, but also how these features converge
to contribute to the formation of scene identity. Yet disentangling feature-
specific modulation of scene-selective neural activity within global scene
representations remains a challenge, as these features rarely exist in iso-
lation, and may inform scene identity through complex interactions
which vary according to scene category.

Early research exploring diagnostic visual features in the recognition
of objects revealed a primary role for edge-based information
(i.e., structure), suggesting surface characteristics such as color and
texture play only a secondary role in object recognition (Biederman
and Ju, 1988). Research has since extended support for edge-based
determinants of visual object recognition to scene perception (Delorme
et al., 2000;Walther et al., 2011;Walther and Shen, 2014), yet a growing
body of work suggests diagnostic surface characteristics such as color
and texture are instrumental inmediating early-stage scene gist process-
ing that is responsible for successful scene recognition (Schyns andOliva,
1994; Oliva and Schyns, 2000; Goffaux et al., 2005; Steeves et al., 2004;
Castelhano and Henderson, 2008). Given these differences, the interplay
between surface properties and structural features as determinants for
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scene recognition is currently unclear. One framework for scene percep-
tion, which may reconcile these differences, proposes that the recogni-
tion of complex visual scenes can be understood through interactions
between perceptually available information and categorization demands
(Oliva and Schyns, 1997). This recognition framework centers on the no-
tion of feature diagnosticity: the idea that specific visual cues are used for
specific types of categorizations and an interaction between task de-
mands and available visual information can explain how different cues
are used to recognize scenes. In other words, diagnostic visual features
may emerge as a function of their usefulness in defining the identity of
a scene, and the task demands placed on the observer. Thus, the present
study aims to investigate the influence of diagnostic surface- and edge-
based visual features on neural scene processing across a range of
scene categories.

Given the variability of visual information across scene categories,
Oliva and Torralba (2006) proposed that the most effective global fea-
tures for scene identification will be those capturing the global structure
and meaning of the visual world. For example, manufactured environ-
ments (e.g., cities) are dominated by prominent edge-based information
containing straight horizontal and vertical lines, while natural land-
scapes (e.g., deserts) tend to have zones of characteristic textures and
undulating contours which may be meaningful for scene identification
(Oliva and Torralba, 2001). Thus, structural information (e.g., layout
and geometry)may be of greater diagnostic relevancewhendiscriminat-
ing scenes withinmanufactured environments, whereas both distinctive
textured zones and undulating spatial structures may be diagnostic for
scene identification in natural environments. Indeed, behavioral research
has revealed the importance of global texture cues in capturing the diag-
nostic structure of natural scenes (Oliva and Torralba, 2006). For in-
stance, a forest can be described in terms of the roughness and
homogeneity of its textural components, providingmeaningful informa-
tion to a human observer comparing two forest scenes (Rao and Lohse,
1993). The neural representations of texture perception in PPA, however,
have been investigated using isolated objects, and not entire scenes
(Cant and Goodale, 2007; 2011), and it is therefore unclear how texture
contributes to scene representations in scene-selective cortex.

In light of the importance of layout and texture information in scene
perception, and potential differences in the relevance of these features
for categorizing different scenes, the present study examined neural ac-
tivity in scene-selective cortexwhile observers attended to either the lay-
out or texture of natural and manufactured scenes, either of which could
change while the other was held constant. We hypothesized that PPA
would show equal sensitivity tomanipulations of both layout and texture
in natural scenes, where textured zones and layout may be equally rele-
vant for distinguishing scene identity. In manufactured scenes, however,
we hypothesized that PPAwould show less sensitivity to texture, relative
to layout, as these scenes contain prominent horizontal and vertical struc-
tural components that can aid in the discrimination of scene identity. In
order to isolate effects to PPA, we also examined the modulation of
brain activity in other areas of scene- and object-processing networks,
and additionally localized a region of early visual cortex to examine if ac-
tivation patterns observed in PPA can be dissociated from activity in early
visual areas. Building on previous research (Walther et al., 2009; 2011;
Park et al., 2011; Kravitz et al., 2011), we took advantage of both univar-
iate andmultivariate analyses to investigate previously unexplored ques-
tions of how task-dependent global scene features (i.e., attend to texture
or layout) interact with high-level conceptual scene attributes (i.e.,
content: natural vs. manufactured scenes; and spatial boundary: open
vs. closed scenes) to shape scene representation in human visual cortex.

2. Materials and methods

2.1. Observers

Twelve paid observers (6 males; mean age 27.4 ± 3.8 years) with
normal or corrected-to-normal visual acuity were recruited from the

University of Toronto community. Observers gave informed consent in
accordance with the University of Toronto Ethics Review Board.

2.2. Stimuli and procedure

Stimuli were grayscale photographs from four different scene
categories devoid of foreground objects to avoid interference (see
Davenport and Potter, 2004; Joubert et al., 2007) and created by varying
features of spatial boundary (open vs. closed) and scene content (natu-
ral vs.manufactured; Fig. 1)(Oliva and Torralba, 2001). After selection of
our four scene categories, twelve unique structural arrangements
(i.e., layouts) were selected for each category, and twelve appropriate
textures were applied to the dominant surface of each layout (mapped
onto scene gradient and depth using Adobe Photoshop CS3), yielding
144 unique images per scene category (12 layouts/category × 12 tex-
tures/layout× 4 scene categories=576 total images). E-Prime2.0 (Psy-
chology Software Tools, Pittsburgh, PA) was used to control stimulus
presentation and collect behavioral responses. Images were rear-
projected onto a screen in the MRI scanner at a resolution of
500 × 500 pixels (subtending 10.4° × 10.4° of visual angle), and
observers viewed stimuli through a mirror mounted to the head coil
directly above the eyes. We used a blocked fMRI experimental para-
digm, wherein sixteen images from a single scene category were
presented in blocks of 16-s each. Each block was preceded by a 12-s
fixation period and a 4-s written instruction to attend to changes in
either the texture or layout of the scenes in the ensuing block.

In each trial (8 per block, lasting 2 s each), two scenes were present-
ed for 300 ms (separated by a 200-ms blank interval), and the task of
the observers was to decide if the attended feature (i.e., layout or
texture) was the same or different across the two images, responding
during a 1.5-s period following the onset of the second image (via a
response pad placed in the observer's right hand). Each block contained
an equal number of “same” and “different” trials. Observers were
instructed to maintain central fixation and respond as accurately as
possible, placing no emphasis on fast response times to help encourage
accurate performance. Images from a single scene category were pre-
sented randomly within each block, and each image could be repeated
only once per observer. Each observer took part in 8 runs (4 min 28 s
each). Each run contained a unique and counterbalanced order of 8
different stimulus blocks (i.e., 8 different conditions: attend to texture
or layout in each of the four scene categories). Run order was random-
ized across observers, and scene category was held constant per block.

2.3. Localizer scan

Stimuli used to localize object-, scene-, and face-sensitive areas
of cortex, as well as early visual cortex, were photographs of various
scenes, faces, common objects, and tile-scrambled images. Stimuli
were presented in 16-s blocks of 32 images at a resolution of
375 × 375 pixels (7.8° × 7.8°) and were displayed for 400 ms each,
with an interstimulus interval of 50ms. Observers fixated on a centrally
presented black fixation cross and were instructed to respond with a
button press when the fixation cross changed from black to red (ran-
domly occurring once or twice per stimulus block). There were 4 blocks
for each stimulus category within a run, and there were two unique run
orders. Each observer took part in three localizer runs (6min 40 s each).

2.3.1 . MRI acquisition
Scanning was performed at the Center for Addiction and Mental

Health using a 3-T GE Discovery MR750 whole-body MRI scanner
equipped with an 8-channel head coil. T1-weighted anatomical images
were acquired using a 3D SAG T1 BRAVO spiral pulse sequence [repeti-
tion time (TR), 6736 ms; echo time (TE), 3 ms; inversion time, 650 ms;
flip angle 8°, 256 × 256 matrix size, 200 slices, 1 mm isovoxel]. For the
functional runs, T2*-weighted images sensitive to blood oxygenation
level-dependent (BOLD) contrasts were acquired using a spiral pulse

682 M.X. Lowe et al. / NeuroImage 125 (2016) 681–692



sequence (64 × 64 matrix size; field of view 22 cm; TR 2000 ms; TE 30
ms; flip angle 60°; 200 volumes for the localizer runs and 134 volumes
for the main experimental runs). Thirty-one slices (3.4 mm × 3.4
mm× 5mm, no gap) parallel to the anterior and posterior commissure
line were collected in all functional runs.

2.4. Univariate data analysis

fMRI data were processed and analyzed using BrainVoyager QX 2.8
(Brain Innovation, Maastricht, the Netherlands). Data preprocessing
included slice acquisition time correction, 3D motion correction,
temporal filtering (linear trend removal and high-pass filtering set at
3 cycles/run), and Talairach space transformation (Talairach and
Tournoux, 1988). Data from the functional localizer was analyzed
using a general linear model (GLM), accounting for hemodynamic
response lag (Friston et al., 1994). Regions of interest (ROIs) can be
seen in Fig. 2. In accordance with Epstein and Kanwisher (1998), the
PPA ROI was defined as a region in the collateral sulcus and
parahippocampal gyrus whose activation was higher for scenes than
for faces and objects (false discovery rate, q b 0.05; this threshold
applies to all functional regions localized in individual observers;
identified in all twelve observers; see Fig. 2). In addition, in accordance
with Epstein and Higgins (2007) and Dilks et al. (2013), retrosplenial
complex (RSC) and the occipital place area (OPA; also known as trans-
verse occipital sulcus) ROIs were functionally defined as regions in
restrosplenial cortex–posterior cingulate–medial parietal cortex and

transverse occipital cortex, respectively, whose activations were higher
for scenes than for faces and objects (identified in eleven, and nine, ob-
servers, respectively). In accordancewith Grill-Spector et al. (2000), the
lateral occipital area (LO) was defined as a region in the lateral occipital
cortex near the posterior inferotemporal sulcus, with activation higher
for objects than for tile-scrambled objects (identified in all twelve ob-
servers). Early visual cortex (EVC) was defined as a retinotopic region
around the calcarine sulcuswith activation higher for scrambled objects
than intact objects (MacEvoy and Epstein, 2011; Cant and Xu, In Press;
identified in eleven observers).

Following the standard ROI-based analysis approach (Saxe et al.,
2006), we overlaid the ROIs onto the data from our main experiment
and extracted time courses from each observer. Peak responses for
each condition were obtained by collapsing the time courses for all of
the conditions and then identifying the time point of greatest signal am-
plitude in the average response (Xu andChun, 2006; Xu, 2010; Cant and
Xu, 2012). This was done separately for each observer in each ROI, and
the resultant peak responses were then averaged across all observers.
The average levels of peak activation (measured in percent BOLD signal
change from baseline fixation) for each condition across observers were
subjected to a 6 (ROI: PPA, RSC, OPA, LO, FFA, EVC) × 2 (spatial bound-
ary: open vs. closed) × 2 (content: natural vs. manufactured) × 2 (task:
texture vs. layout) repeated-measures ANOVA (SPSS, Chicago, IL, USA).
This analysis revealed differences in activation across ROIs, so further
analyseswere conducted on each ROI separately. Moreover, subsequent
analyses revealed no significant differences in activation between open

Fig. 1. Experimental stimuli. (A) Examples of the four scene categories used. Scenes were defined by their spatial boundary (open vs. closed) and content (natural vs. manufactured). Ob-
servers attended to either the global texture or spatial layout (task context) within a scene, either of which could change while the otherwas held constant. (B) Comparisons of structural
information displayed through line drawings. Note that, in the absence of textural information, structure is more informative in manufactured scenes.
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and closed scenes in scene-selective cortex, so all subsequent univariate
analyses were conducted by examining differences in content and
task, collapsed across spatial boundary (see univariate results
below). Planned pairwise comparisons (Bonferroni-corrected for
multiple comparisons) were then conducted to examine the rela-
tionship in activity between texture and layout for natural and
manufactured scenes in each ROI. Since no differences between
hemispheres were observed for all ROIs, bilateral regions were com-
bined for analysis.

2.5. Multivoxel pattern analysis (MVPA)

2.5.1. Support vector machine classifiers
Pattern classificationwas performedwith a combination of in-house

software (using Matlab) and the Princeton MVPA Toolbox for Matlab
(http://code.google.com/p/princeton-mvpa-toolbox/) using a Support
Vector Machines (SVM) classifier (libSVM, http://www.csie.ntu.edu.
tw/~cjlin/libsvm/). The SVM model used a linear kernel function and a
constant cost parameter, C= 1, to compute a hyperplane that best sep-
arated the block/condition responses. To test the accuracy of the SVM
classifiers, we used a “leave-one-run-out” N-fold cross-validation, in
which a single fMRI run was reserved for classifier testing. We per-
formed this N-1 cross-validation procedure until all runswere separate-
ly tested, and then averaged across N-iterations in order to produce a
representative classification accuracy measure for each participant,
ROI, and pattern discrimination (see Duda et al., 2001).

2.5.2. Multiclass and pairwise discriminations
SVMs are designed for classifying differences between two stimuli

and LibSVM (the SVM package implemented here) uses the so-called
“one-against-one method” for classification (Hsu and Lin, 2002). With

the SVMs, we performed two complementary types of classification
analyses: one in which the multiple pairwise results were combined
in order to produce multiclass discriminations (distinguishing among
all 8 of our condition types) and another in which the individual
pairwise discriminations were examined and tested separately.

The multiclass discrimination approach allowed for an examination
of the distribution of the classifier guesses through visualization of the
resulting “confusion matrix.” In a confusion matrix, each row (i) repre-
sents the instances of the actual condition and each column (j) repre-
sents the predicted condition. Their intersection (i, j) represents the
(normalized) number of times a given condition i is predicted by the
classifier to be condition j. Thus, the confusion matrix provides a direct
visualization of the extent to which a decoding algorithm confuses
(or correctly identifies) the different classes. All correct classifica-
tions are located in the diagonal of the matrix (with classification
errors represented by non-zero values outside of the diagonal)
and average decoding performance is defined as the mean across
the diagonal. The values in each row sum to 1 (i.e., 100% classifica-
tion). If decoding is at chance levels, then classification performance
will be at 1/8 = 12.5%. For all multiclass discriminations, we statis-
tically assessed decoding significance across participants (for each
ROI and condition epoch) using one-tailed t-tests versus 12.5%
chance decoding.

In contrast, the pairwise discrimination approach allowed us to
identify ROIs encoding scene content and spatial boundary while
other scene attributes were held constant, as well asmake comparisons
across tasks (i.e., texture and layout). It is important to recognize that
this pairwise information and any nuances in the pattern of effects
would be largely obscured using a multiclass discrimination approach.
For pairwise discriminations, we statistically assessed decoding signifi-
cance across participants using one-tailed t-tests versus 50% chance

Fig. 2. Regions of interest. Functionally defined ROIs are shown on a representative participant's brain. Talairach coordinates for peak voxels of each ROI in this representative participant
are shown as follows: LPPA,−22,−43,−9; RPPA, 31,−45,−5; LRSC,−16,−54, 7; RRSC, 22,−49, 7; LOPA,−29,−84, 15; ROPA, 40,−83, 17; LLO,−39,−72,−7, RLO: 45,−69, 2;
LFFA,−36, −34, −23; RFFA, 45, −45, −12; LEVC,−6,−87, −3; REVC, 10, −84,−4.
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decoding. Importantly, for both the multiclass and pairwise discrimina-
tions, an FDR correction of q ≤ 0.05 was applied based on the number of
ROIs examined (Benjamini and Hochberg, 1995).

2.5.3. Inputs to the SVM Classifier
BOLD percent signal change values for each ROI provided inputs to

the SVM classifier. The percent signal change response was computed
from the time-course activity for the task-evoked responses with
respect to the time-course of a run-based averaged baseline fixation
value, for all voxels in the ROI. The baseline fixation window was
defined as a time point prior to the 4-s instruction period before each
stimulus block (6 s prior to block onset, averaged across all blocks with-
in an experimental run). For the block-evoked activity, we extracted, for
each condition, the average of imaging volumes 3–8 (i.e., 6–16 s),which
are time points encompassing the first peak of the hemodynamic
response until the end of the experimental block. This windowed-
average percent signal change classification approach corresponds
with that used in recent work using the same technique (e.g., Gallivan
et al., 2013;Galivan et al., 2014). Following the extraction of each block's
activity, these values were rescaled between−1 and+1 for each voxel
pattern within an ROI (Misaki et al., 2010).

2.6. Behavioral data analysis

Behavioral performance measures of accuracy were recorded using
E-Prime 2.0 software and analyzed with SPSS, by performing a 2 (spatial
boundary: open vs. closed) × 2 (content: natural vs. manufactured) × 2
(task: texture vs. layout) repeated-measures ANOVA.

3. Results

3.1. Univariate analysis

An initial repeated-measures ANOVA including ROI as a factor (PPA,
RSC, OPA, LO, FFA, and EVC) revealed significant main effects of ROI
(F5,30 = 21.01, p b 0.001), content (F1,6 = 10.43, p = 0.018), and
task (F1,6 = 133.57, p b 0.001), but not spatial boundary (F1,6 = 0.22,
p = 0.66). Additionally, we observed significant interactions between
ROI and content (F5,30 = 12.30, p b 0.001) and task (F5,30 = 4.95, p =
0.002), demonstrating functional differences in scene-, object-, face-

selective, and early visual cortex for our task and stimuli. Thus, we con-
ducted all subsequent analyses on each ROI individually. Moreover,
since no main effect of spatial boundary was observed (and no two-
way interactions with this factor and ROI), we collapsed across spatial
boundary in subsequent analyses to examine differences between
content and task (Fig. 3).

Further examination of scene-selective cortex revealed a significant
main effect of content (PPA: F1,11 = 58.20, p b 0.001; RSC: F1,10= 44.29,
p b 0.001; OPA: F1,8=6.92, p=0.030) and task (PPA: F1,11=13.62, p=
0.004; RSC: F1,10 = 8.73, p = 0.014; OPA: F1,8 = 11.43, p = 0.010),
reflecting higher activity when observers attended to manufactured,
over natural, scenes, and layout over texture, respectively. A significant
interaction between content and task was found in PPA (F1,11 = 8.55,
p = 0.014) and RSC (F1,10 = 9.19, p = 0.013), but not OPA (F1,8 =
3.43, p = 0.101). When we examined object-selective LO, a significant
main effect of task (F1,11 = 9.03, p = 0.012), but not content (F1,11 =
0.05, p=0.82) was observed (and no significant interaction), revealing
higher activity when observers attended to layout over texture, with no
difference betweenmanufactured and natural scenes. In contrast, when
we examined activity in both EVC and FFA, no significantmain effects or
interactions were observed (all Fs b 2.39; all ps N 0.15), indicating no
differentiation of scene content or task in these ROIs.

Profiles of neural activity for each task (i.e., texture and layout) were
consistent among scene-selective regions, revealing no significant
region-by-task interactions (all Fs b .978; all ps N 0.35). Interestingly,
a region-by-content interaction was observed between PPA and OPA
(F1,8 = 7.09, p = 0.029), but not RSC and OPA (F1,7 = 2.89, p =
0.133). Conversely, profiles of activation in scene-selective cortex
were significantly different from those observed in object-selective cor-
tex (significant region-by-content interaction between LOandPPA, RSC,
and OPA; all Fs N 13.20; all ps b 0.01), face-selective cortex (significant
region-by-content interaction between FFA and PPA, RSC, and OPA;
significant region-by-task interaction between FFA and PPA, OPA; all
Fs N 15.41; all ps b 0.01), and EVC (significant region-by-content inter-
action between EVC and PPA, and RSC; all Fs N 22.76; all ps b 0.002;
significant region-by-task interaction between EVC and PPA, and OPA;
all Fs N 8.99; all ps b 0.020). This demonstrates that our results are
distinct to high-level scene-selective visual cortex, and are not likely
explained by appealing to differences in low-level visual features across
scene categories.

Fig. 3. Univariate results. BOLD signal activation for natural (N) and manufactured (M) scenes when attending to either layout or texture. **p b 0.01, ***p b 0.001.
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To test the hypothesis that neural activity in scene-selective cortex
would be modulated by the diagnostic relevance of scene features,
plannedpairwise comparisonswere conducted to examine the relation-
ship between scene content (natural vs. manufactured) and task (tex-
ture vs. layout) (Fig. 3). In line with our predictions, the results
demonstrated equal sensitivity to texture and layout in natural scenes
(PPA: t11 = 0.20, p = 0.84, RSC: t10 = 0.43, p = 0.67; OPA: t8 = 0.77,
p = 0.47), but less sensitivity to texture in manufactured scenes
(PPA: t11 = 4.08, p = 0.002, RSC: t10 = 3.63, p = 0.005; OPA: t8 =
7.29, p b 0.001), revealing that the importance of specific scene features
(i.e., texture or layout) varies according to the perceived scene content
(i.e., natural or manufactured). Notably, no differences were observed
in LO, FFA, and EVC (all ts b 1.98; all ps N 0.07).

3.2. Multivoxel pattern analysis

Previous research has demonstrated that both the content and
spatial boundary of a scene can be decoded from scene-selective regions
of cortex (e.g., Park et al., 2011) yet less is known about the neural
mechanisms underlying these processes. While there is support that
edge-based structural information is sufficient for decoding high-level
scene content (Walther et al., 2011), the contributions of edge-based
information in defining the spatial boundary of a scene, or how surface
characteristics contribute to either of these scene attributes, is unclear.
To address these questions, we conducted a number of different
multivariate analyses. Following previous investigations (Walther
et al., 2009; Park et al., 2011; Kravitz et al., 2011), we first extracted
multivoxel fMRI activity and used linear SVM classifiers in each region
to examine the extent to which each scene condition could be decoded
(Fig. 4A). These multiclass discriminations revealed classification
accuracies that were significantly above chance (12.5%) for all ROIs
(all ts N 3.39, all ps b 0.01), replicating previous findings (see Walther
et al., 2009; 2011; Park et al., 2011). To investigate these significant
multiclass discriminations in greater detail, we next conducted subse-
quent analyses to examine interactions of task context with high-level
scene attributes within each scene category. We also investigated the
classification of task context itself and the distribution of classifier
confusion errors across regions of scene-selective cortex. We describe
the results of each analysis in turn below.

3.2.1. Classification of high-level scene attributes
While multiclass discriminations allow us to investigate decoding of

individual scene categories, it does not provide information about the
nature of high-level scene attributes within a particular scene category.
Thus, as a next step in ourmultivariate analyses, we conducted pairwise
discriminations to examine classification accuracy when decoding
scene content (train the classifier on the difference between natural
vs. manufactured scenes, and test on the same difference, separately
in open and closed scenes, i.e., with spatial boundary held constant;
Fig. 4B, D) and spatial boundary (with scene content held constant;
Fig. 4C, E) within a given scene category, separately when observers
attended to either layout or texture. Examination of scene content
while spatial boundary was held constant revealed classification
accuracy significantly above chance in PPA for content in both open
and closed scenes when observers attended to both layout (Open:
t11= 4.89, p b 0.001; Closed: t11= 3.99, p=0.002; Fig. 4B) and texture
(Open: t11 = 2.29, p = 0.043; Closed: t11 = 5.62, p = 0.002; Fig. 4D).
Similar results were found in OPA for both the attend layout condition
(Open: t8=5.27, p b 0.001; Closed: t8=4.11, p=0.003) and the attend
texture condition (Open: t8 = 4.97, p = 0.001; Closed: t8 = 2.99, p =
0.017), and RSC for both the attend layout condition (but note that
while RSC showed significant decoding of content in closed scenes,
t10 = 3.91, p = 0.003, this result was only marginally significant in
open scenes, t10 = 1.98, p = 0.076) and the attend texture condition
(Open: t10 = 2.28, p = 0.046; Closed: t10 = 5.38, p = 0.003). While
classification accuracy in EVC was significantly above chance for scene

content in both open and closed scenes in the layout condition (Open:
t10 = 2.93, p= 0.015; Closed: t10 = 3.78, p= 0.004), it was significant
in only closed scenes in the texture condition (Open: t10 = 1.47, p =
0.17; Closed: t10 = 4.02, p = 0.002), further dissociating activity in
areas of early visual cortex with scene-selective regions.

Following previous research using similar stimulus sets (Park et al.,
2011; Kravitz et al., 2011), we next examined classification accuracy
of spatial boundary (train and test on open vs. closed scenes) while
scene content was held constant (either within natural or within
manufactured scenes). Specifically, we examined whether we could
significantly decode spatial scene features from scene-selective cortex
in manufactured, but not natural, scenes, when observers attended to
layout, which would be consistent with our initial hypothesis and
univariate results. Indeed, the classification of spatial boundary in
PPA and RSC was significantly above chance for manufactured
(PPA: t11=2.43, p=0.034; RSC: t10=3.35, p=0.007), but not natural,
(PPA: t11 = 1.17, p = 0.27; RSC: t10 = 0.81, p = 0.44; Fig. 4C), scenes.
Patterns of classification in OPA (Natural: t8 = 3.17, p = 0.013;
Manufactured: t8 = 2.26, p = 0.054), however, were more similar to
EVC (Natural: t10 = 2.61, p = 0.026; Manufactured: t10 = 3.40, p =
0.007). Interestingly, unlike the results observed for scene content,
when classifying spatial boundary, we observed quite different results
when participants attended to the texture, compared with the layout,
of a scene (i.e., compare Figs. 4B vs. D with Figs. 4C vs. E). Specifically,
these results showed significantly above-chance classification accuracy
of spatial boundary in PPA, OPA, and EVC for both natural (PPA: t11 =
3.91, p = 0.002; OPA: t8 = 3.15, p = 0.014; EVC: t10 = 4.17, p =
0.002) and manufactured (PPA: t11 = 2.87, p = 0.015; OPA: t8 = 3.27,
p = 0.011; EVC: t10 = 2.74, p = 0.021) scenes, but only for natural
scenes in RSC (natural: t10 = 3.22, p = 0.009; manufactured: t10 =
1.81, p = 0.10).

3.2.2. Classification of task context
As previous reports have indicated sensitivity to processing both

texture (e.g., Cant and Goodale, 2007; 2011) and spatial layout
(e.g., Epstein and Kanwisher, 1998; Epstein et al., 2003) information in
scene-selective cortex, we next examinedwhether task (texture vs. lay-
out) could be decoded from areas of scene-selective cortex (PPA, RSC,
OPA) across each of our four scene categories (see Fig. 1), which may
ultimately speak to whether their processing is mediated by shared or
distinct neural mechanisms. Critically, no significant decoding
was found between these tasks in both PPA and RSC (all ts b 2.44, all
ps N 0.13), suggesting similar underlying neural representations
between the processing of scene texture and layout in these regions
(i.e., the patterns of activation for these two attended scene features
were quite similar in PPA and RSC). Interestingly, significant decoding
of layout versus texture was observed in OPA (Natural Open: t8 =
4.00, p = 0.016; Manufactured Closed: t8 = 3.27, p = 0.046). The sim-
ilarities between PPA and RSC are consistentwith our univariate results,
and together with significant decoding in OPA, may speak to a function-
al dissociation between these regions that are based on differences in
processing low-level visual information. However, as caution must be
applied both when interpreting null effects with multivoxel data
(see Dubois et al., 2015) and when interpreting apparent functional
dissociations across cortical regions, we are currently exploring these
results in greater detail using a separate paradigm.

3.2.3. Classification Errors
To further investigate the underlying structure of representations

across regions and conditions, we next examined, based on the results
of the multiclass discriminations, the distribution of classifier guesses
via a confusion matrix. In a confusion matrix, each row indicates
instances of the actual trial class and each column indicates the trial
class predicted by the trained SVM classifier. Thus, the confusionmatrix
provides not just a visualization of the correct classifications (indicated
by classifier responses along the diagonal axis) but also the cases of
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misclassification (i.e., where the trained classifier “confuses” the actual
trial class with that of another class, as indicated by the off-diagonal
classifier guesses). The distribution ofmisclassifications can be informa-
tive as it suggests similarity in the patterns of activity across trial types
(i.e., two conditions represented similarly are more likely to be
misclassified as one another), which is not necessarily evident from
the multiclass decoding accuracies alone.

In order to extend upon previouswork using a similar analysis (Park
et al., 2011), here we determined the types of classification errorsmade
across scene categories while observers attended to individual scene
features (texture vs. layout) rather than the image as a whole (as has
been done previously). Importantly, this level of analysis allows greater

specification of the types of classifier errors made when attending to
different features within a scene and thus greatly improves our under-
standing of how task demands shape visual representations in scene-
selective cortex. If a given region is sensitive to the spatial boundary of
a scene when observers attended to either scene layout or texture,
then classifier errors in the confusion matrix may be grouped by spatial
boundary, regardless of scene content (e.g., open natural scenes may be
confused with open manufactured scenes, and closed natural scenes
may be confused with closed manufactured scenes, but it is less likely
that open and closed scenes would be confused for each other; see
hypothetical confusionmatrices in Fig. 5A). Conversely, if a given region
is sensitive to the content of a scene when observers attended to either

Fig. 4. Multivariate results. (A) Classification accuracy (chance = 12.5%; dashed line) of all eight conditions for each ROI. (B) Decoding accuracy (chance = 50%) of scene content with
spatial boundary held constant when attending to layout, and (C) spatial boundary with scene content held constant when attending to layout. (D) Decoding accuracy of scene content
with spatial boundary held constant when attending to texture, and (E) spatial boundary with scene content held constant when attending to texture. Error bars represent the standard
error of the mean. *p b 0.05, **p b 0.01, ***p b 0.001, +q ≤ 0.05.
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Fig. 5. Confusionmatrices generated from themulticlass discriminations. (A) Hypothetical confusion errorswithin the same spatial boundary or within the same content. Note that when
decoding is perfect, the confusionmatrixwill have a diagonal containing values of 1 and the rest of thematrixwill be zero. (B) Confusionmatrices for eachROI representing classifier errors
across conditions. The average classifier response proportions across participants are shown. Shaded squares represent predicteddecoding values significantly greater than12.5% (chance).
(C) Confusion errors (collapsed across task) within the same spatial boundary or within the same content across ROIs. Error bars represent the standard error of the mean. N = Natural,
M = Manufactured, O = Open, C = Closed, *p b 0.05, **p b 0.01.
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scene layout or texture, then confusion errors may be grouped by scene
content, regardless of spatial boundary (e.g., open natural scenes may
be confused with closed natural scenes, and open manufactured scenes
may be confused with closed manufactured scenes, but it is less likely
that natural and manufactured scenes would be confused for each
other).

Since distinctive structural features acrossmanufactured and natural
environments may be used to accurately discriminate scene content
(Walther et al., 2011), a greater number of confusion errors may be
observed within the same content, rather than within the same spatial
boundary when observers attended to scene layout. For instance,
when attending to the layout of a scene, manufactured environments
may be confused with each other, but not with natural environments,
due to characteristic structural components acrossmanufactured scenes
(Oliva and Torralba, 2001), regardless of spatial boundary, which may
be of greater importance for distinguishing scenes based on depth.
Similarly, spatial boundary may be less important when discriminating
texture across scenes. Thus, we hypothesized overall greater confusion
errors in PPA within the same content, compared with the same spatial
boundary, when observers attended to both the layout and texture of a
scene.

Fig. 5B shows the confusionmatrices for each ROI, and Fig. 5C shows
the types of classification errors made across all ROIs. A repeated-
measures ANOVA with factors ROI, scene attribute (spatial boundary
vs. content), and task (texture vs. layout) only revealed a significant
ROI-by-attribute interaction (F5,30 = 3.01, p = 0.025), warranting
further investigation of differences between spatial boundary and
scene content across ROIs. However, since we observed no main effect
of task (F1,6 = 2.60, p = 0.16) and no interactions with this factor
(ROI-by-task, task-by-attribute, ROI-by-task-by-attribute; all Fs b 2.10,
all ps N 0.093), we collapsed across task for subsequent analyses.
Pairwise comparisons were performed using a two-tailed t-test. As
expected, confusions within the same content were found to be signifi-
cantly higher than confusions within the same spatial boundary in PPA
(t11 = 3.29, p = 0.007). Interestingly, RSC showed this same distribu-
tion of errors (t10 = 2.29, p = 0.045), building on both our univariate
andmultivariate findings showing evidence for similarities in represen-
tations between PPA and RSC. In contrast, other regions showed no such
differences (all ts b 0.89, all ps N 0.40) in the types of classification errors
made. Critically, and in linewith our univariate andmultivariate results,
patterns of classification errors in PPA were dissociated from those in
LO, FFA and EVC (all Fs b 1.53, all ps N 0.26), suggesting the patterns of
misclassifications observed in PPA were specific to high-level scene
processing and were not likely driven by low-level image properties.

3.3. Behavioral performance

To ensure attention during the experimental task, observers were
asked to compare the identity of two images along a particular relevant
feature (i.e., layout or texture). The overall response accuracy was high
(M = 95.45% ± 3.66%, range = 90.67%–97.27%), confirming observers
attended to the relevant feature successfully. Behavioral results are
reported in Table 1 (we report results for accuracy, and not response
time, since we emphasized the former, but not the latter, when describ-
ing the task to observers; thus interpreting results for accuracy is more
valid in this study). Although near-ceiling performance across all
conditions was observed, we did find significant main effects of content
(F1,11 = 8.17, p = 0.016), and task (F1,11 = 5.46, p = 0.039), but not
spatial boundary (F1,11 = 3.39, p = 0.093). We also observed multiple
two-way interactions (content-by-boundary: F1,11 = 8.08, p = 0.016;
content-by-task: F1,11 = 19.50, p = 0.001; boundary-by-task: F1,11 =
8.28, p=0.015). These significant results are likely driven by compara-
tively lower performance in one condition (see Table 1), but despite
this, behavioral response profiles did not match fMRI response profiles
in scene-selective cortex (e.g., in manufactured scenes, activation to
layout was greater than texture, despite no difference in behavioral

performance across these conditions). This makes it unlikely that task
difficulty directly contributed to the observed neural activation patterns
in scene-selective cortex. This is consistent with previous findings
showing thatmodulation of activity in PPAwas dissociable frommanip-
ulations of task difficulty (Xu et al., 2007).

4. Discussion

It has previously been proposed that the diagnostic structure and
meaning of a visual scene is characterized by the boundaries and
content of a space and is captured by a collection of global image
features, such as texture and layout (Oliva and Torralba, 2006). Here,
we examined the underlying neural representations of global scene
texture and structural layout to explore the contributions of these
features in scene processing, testing the hypothesis that the diagnostic
relevance of these features in their respective scenes would flexibly
modulate activity in scene-selective cortex. We present novel evidence
demonstrating that, relative to layout, activity in scene-selective cortex
showed equal sensitivity to texture in natural scenes, but less sensitivity
to texture in manufactured scenes. These findings indicate activity in
scene-selective cortex is not only modulated bymultiple scene features
but may be scene-specific and dependent on the relevance of various
features within a scene. Critically, this pattern of univariate activation
differed markedly from that observed in early visual cortex, and areas
selective to face and object processing, demonstrating these findings
are unique to scene-selective cortex, and are not simply a result of
differences in low-level image properties. In line with these findings,
multivoxel pattern analysis revealed that the encoding of high-level
scene attributes varies according to scene category and is influenced
by task context, suggesting dynamic and flexible scene representations
are formed from an interaction between multiple scene properties and
the task goals of the observer.

4.1. Feature diagnosticity and task context in scene recognition

In support of previous theories of a primary role for PPA in spatial
encoding (Epstein and Kanwisher, 1998; Epstein et al., 2003; Park
et al., 2011; Kravitz et al., 2011), the data presented here demonstrate
overall greater sensitivity to the encoding of structural layout, relative
to texture, across scene-selective cortex. Typically, edge-based structur-
al information is sufficient for observers to distinguish between scenes
(Biederman and Ju, 1988; Delorme et al., 2000; Walther et al., 2011).
In contrast, our results indicate that when structural information is
less informative (e.g., in natural environments), processing in scene-
selective cortex may rely on other diagnostic features which uniquely
inform scene representations. Indeed, Steeves and colleagues (2004)
have shown that, unlike in healthy observers, PPA activation in an indi-
vidual with profound visual form agnosia (i.e., impairments in process-
ing structure) was modulated by the presence of appropriate scene
color when color was useful for accurate scene identification. Neural
activity in scene-selective regions within the ventral visual cortex may
therefore also reflect the relative high-level contributions of various
scene features beyond spatial layout which contribute to the formation
of scene identity.

In a similar vein,Harel et al. (2014) have suggested top-down signals
produced by behavioral goals and observer intent directly impact visual

Table 1
Accuracy (percent correct) for each condition.

Layout Texture

Manufactured open 95.65 ± 1.11 96.57 ± 0.65
Manufactured closed 96.92 ± 0.57 96.00 ± 1.30
Natural open 97.27 ± 0.58 94.52 ± 0.96
Natural closed 95.96 ± 0.68 90.67 ± 1.20

All values represent mean (percent correct) ± SE.
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object representations within the ventral visual pathway, supporting
the view that cortical activity reflects not only the physical properties
of a stimulus, but also the internal state of the observer. In the present
study, we provide evidence consistent with this research by showing
that task context (i.e., attended feature) influences neural activity in
scene-selective cortex. Here, global texture cues may provide meaning-
ful information for discriminating scenes containing a high degree of
physical similarity, such as desert landscapes (see Fig. 1B), and thus
attending to these features may selectively modulate activity in scene-
selective cortex accordingly. Furthermore, in addition to providing
meaningful high-level identity information, global texture cues have
been shown to inform the processing of spatial depth and contour
(Torralba and Oliva, 2003), suggesting a convergent and complementa-
ry relationship between texture and spatial structure.

4.2. Decoding of high-level scene attributes

Moving beyond the question ofwhether a brain region is sensitive to
certain visual features, we next aimed to explore discriminations
between various high-level scene attributes in ventral visual cortex.
Consistent with previous research suggesting PPA represents both
content and spatial boundary information (Park et al., 2011), ourmulti-
variate analysis revealed that regions in scene-selective cortex discrim-
inated between both of these high-level scene attributes. Having
confirmed previous findings, we next employed novel analyses to
determine whether the decoding of high-level attributes varies accord-
ing to task context and scene category. Investigation of within-category
discriminations revealed significant decoding of spatial boundary and
layout when attending to both texture and layout, suggesting that,
together with layout, texture may form an important basis for defining
scene identity. More specifically, this analysis revealed results consis-
tent with our univariate findings: significant decoding of a spatial
scene feature (i.e., boundary) only occurred in manufactured, but not
natural scenes (in PPA and RSC), when observers attended to the layout
of a scene. The decoding of spatial boundary when observers attended
to texture, however, differed markedly from when observers attended
to layout. Critically, these findings show for the first time that task con-
text directly impacts the representations of high-level scene attributes
and underscores the notion that scene attributes and task demands
may modulate activity in scene-selective cortex to varying degrees
across different scene categories. Together with our univariate results,
these novel findings suggest the importance of scene features may be
scene-specific and task-dependent, rather than of equal importance
across different scene categories.

In contrast to the above results, both spatial boundary and content
could be decoded when attending scene layout regardless of scene
type in areas of early visual cortex, consistent with previous research
(Park et al., 2011). Real-world scene categories contain a high degree
of statistical regularity reflected in distinct low-level features and global
spatial frequency distributions across both scene categories and bound-
aries (Oliva and Torralba, 2001; Torralba and Oliva, 2003). This leaves
open the possibility that scenes could be discriminated based on low-
level attributes alone. Although it is highly likely that low-level features
and statistical regularities across scene categories contribute to the
activation patterns associated with scenes in PPA, these neural patterns
are unlikely to be driven purely by such features. Indeed, in addition to
the functional dissociations between PPA and EVC reported here
(Figs. 3, 4C, D, and 5C), previous findings suggest EVC plays a less direct
role in humans' ability to categorize real-world scenes compared with
PPA (Walther et al., 2009).

4.3. Misclassifications across scene categories

Contrary to previous work (Park et al., 2011), our analysis of the
distribution of classification errors across scene conditions via the
confusion matrix revealed greater clustering of errors within the same

content in PPA and RSC, compared with the same spatial boundary.
Moreover, our results further differ from this previous work in the
finding that the pattern of misclassifications in PPA and RSCwere disso-
ciable from the pattern observed in early visual cortex. These findings
suggest that the structure of encoding observed in PPA extends beyond
the low-level properties of a scene and reflects the high-level represen-
tations of particular features within a scene. For instance, misclassifica-
tions clustered within the same content may be indicative of an
increased reliance on cues provided by relatively stable structural differ-
ences across scene categories. These cues may support the discrimina-
tion of features such as layout and texture, whereas spatial boundary
attributes may be less relevant for distinguishing these features, and
instead may be more relevant for determining spatial depth and routes
for navigation.

How can we reconcile our findings with those from previous work?
Our task was unique as we examined attention to specific features
within a scene (i.e., layout vs. texture), and as such, we propose the
differences between our findings and those from other researchers
stem from the task demands and goals of the observer (Harel et al.,
2014), the diagnostic relevance of different features across scene cate-
gories and the differential allocation of attention to these features, and
differences across the stimuli themselves. For instance, in order to
control for interference effects of salient objects (Davenport and
Potter, 2004; Joubert et al., 2007), our scenes were selected to be devoid
of foreground objects,whichwould likely explain differences in the rep-
resentations of information in object-selective cortex when compared
with previous work, which found greater confusions of content in LO
(Park et al., 2011). Indeed, across our analyses, activity patterns in LO
were dissociated from those in scene-selective cortex and did not
show differences in confusion errors distributed across high-level
scene attributes.

Finally, to the best of our knowledge, previouswork has not revealed
howmanipulating attention to a particular scene feature has differential
effects on activity in scene-selective cortex, depending on the type of
scene being viewed. Thus, these current results emphasize the funda-
mental importance of examining the modulation of activity in scene-
selective cortex as a function of attending to various scene-specific
properties and task-based goals. In the real world, we are not merely
passive observers for the purposes of perception but use attention to
filter the influx of visual information in accordance with our goals.
That is, we engage in scene processing for the purposes of interacting
with our environment, and based on the nature of the surrounding en-
vironment, different visual featureswill becomemore or less important.

4.4. Functional representations across the scene-processing network

The results of the present study have demonstrated both similarities
and differences in functional representations of scenes across the
broader scene-processing network (PPA, RSC, and OPA). These regions
exhibited similar patterns of univariate activation when observers
attended to either scene texture or layout, suggesting reliable and
distinguishable representations of diagnostic scene features across the
scene-processing network compared with non-scene-selective regions
(e.g., FFA, EVC). Conversely, the representation of high-level scene
attributes (content and spatial boundary) differed across these regions.
Across our analyses, similar patterns of activation were observed in PPA
and RSC, yet these patterns were often dissociated from those observed
in OPA (see Figs. 3, 4C, and 5C). Damage to PPA and RSC has been
associated with deficits in the simple visual identification of scenes or
landmarks (Aguirre and D'Esposito, 1999; Mendez and Cherrier,
2003), and with difficulty in an individual's ability to use landmarks to
orient themselves in order to navigate through an environment
(Takahashi et al., 1997), respectively. While recent work has
demonstrated a causal involvement for OPA in scene perception (Dilks
et al., 2013), less is known about how different scene properties are
represented within this region.
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The functional differences we observe across PPA, RSC, andOPAmay
be related to differences in how task context and the importance of
perceptual features shape representations across areas of scene-
selective cortex. In other words, the goals of the observer may differen-
tially affect activation across PPA, RSC, and OPA, by interacting with the
type of perceptual information processed within these regions
(e.g., both spatial and non-spatial visual information in PPA, but more
weighting towards spatial information in OPA; Cant and Xu, 2012; In
Press). An important future question concerns whether OPA represents
high-level information consistent with PPA and RSC, or more basic
perceptual information which may complement representations in
PPA and RSC. Here, we present a broad array of evidence clearly demon-
strating dissociations betweenOPA and both PPA and RSC, but addition-
al research is needed to clarify the nature of these dissociations.

5. Conclusion

To date, there has been considerable debate surrounding the struc-
ture of representations in scene-selective cortex. While support for
spatial encoding has been widespread, neural evidence for how texture
is processed within the context of a scene has received little study,
despite computational and psychophysical evidence supporting a
meaningful role for global texture in scene discrimination. Here, we
demonstrate that scene-selective cortex represents multiple visual
features, such as layout and texture, that the representations of these
features are shaped by perceived scene category, and that these results
are dissociated from activity in early visual cortex and areas non-
selective to scene processing. Furthermore, differences in the multivar-
iate patterns of activation observed across regions of scene-selective
cortex suggest differentiation in the representations of visual features
and scene attributes across the broader scene-processing network. The
present study therefore ties together multiple factors (high-level
scene attributes, task context, and individual visual features), which
were not jointly investigated previously, to highlight the fact that
scene perception and recognition, and visual processingmore generally,
are performed to serve a particular goal, and it is this goal which deter-
mines how informative a particular visual feature is in a particular
environment.
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