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A B S T R A C T   

Ensemble coding refers to the brain’s ability to rapidly extract summary statistics, such as average size and 
average cost, from a large set of visual stimuli. Although ensemble coding is thought to circumvent a capacity 
limit of visual working memory, we recently observed a VWM-like capacity limit in an ensemble task where 
observers extracted the average sweetness of groups of food pictures (i.e., they could only integrate information 
from four out of six available items), thus suggesting the involvement of VWM in this novel form of cross-modal 
ensemble coding. Therefore, across two experiments we investigated if this cross-modal ensemble capacity limit 
could be explained by individual differences in VWM processing. To test this, observers performed both an 
ensemble task and a VWM task, and we determined 1) how much information they integrated into their ensemble 
percepts, and 2) how much information they remembered from those displays. Interestingly, we found that 
individual differences in VWM capacity did not explain differences in performance on the ensemble coding task 
(i.e., high-capacity individuals did not have significantly higher “ensemble abilities” than low-capacity in
dividuals). While our data cannot definitively state whether or not VWM is necessary to perform the ensemble 
task, we conclude that it is certainly not sufficient to support this cognitive process. We speculate that the capacity 
limit may be explained by 1) a bottleneck at the perceptual stage (i.e., a failure to process multiple visual features 
across multiple items, as there are no singular features that convey taste), or 2) the interaction of multiple 
cognitive systems (e.g., VWM, gustatory working memory, long term memory). Our results highlight the 
importance of examining ensemble perception across multiple sensory and cognitive domains to provide a 
clearer picture of the mechanisms underlying everyday behavior.   

Our perception of the visual world is richly detailed, but this sub
jective experience is at odds with a body of research that suggests that 
what we are capable of perceiving is limited by a number of cognitive 
systems such as attention and visual working memory (VWM) (Cohen 
et al., 2016; Luck and Vogel, 1997). However, while our visual envi
ronments are dense with information, this information is not completely 
random, with scenes containing groups of similar objects and features 
(Whitney and Yamanashi Yamanashi Leib, 2018). Our visual system is 
highly sensitive to these regularities and to process them, the brain can 
utilize ensemble coding, which is the ability to represent large amounts 
of information from groups of similar items as a single summary statistic 
(e.g., the average expression of a crowd of faces). Ensemble coding helps 
us circumvent the encoding bottleneck of VWM (Khayat and Hochstein, 
2019), which can only hold about 3 or 4 items at a time (Luck and Vogel, 
1997). 

Despite the known relationship between VWM and ensemble coding, 
and to borrow a term used by Melvyn Goodale when referring to the 
relationship between the dorsal and ventral streams of visual processing 
(Goodale, 2011), ensemble coding and VWM are not ‘hermetically 
sealed’ from one another, and instead these two seemingly distinct 
cognitive systems routinely interact. In this study we investigated the 
underlying nature of a possible interaction between VWM and ensemble 
coding. 

1. Interactions between VWM and ensemble coding 

Much of the research on interactions between ensemble coding and 
VWM has focussed on how the former influences the latter. For example, 
Brady and Alvarez (2011) (see also Papenmeier and Timm, 2021) found 
that an individual’s VWM representations could be biased by ensemble 
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statistics. Observers viewed sets of differently sized colored circles (red 
and blue) and were told to remember the size of all circles of one color. 
When participants reported the color of one of the probed circles, their 
reports of the single item were biased in the direction of the average size 
of all circles of that color. 

Such biases in VWM representations towards the mean of groups of 
items have been found across a range of different stimuli such as faces 
(Griffiths et al., 2018; Corbin and Crawford, 2018) and oriented tri
angles (Utochkin and Brady, 2020). Together, these results reveal that 
summary statistics from ensembles of multiple objects can bias memory 
representations for single items. 

More recently, research has focussed on the inverse relationship, that 
is, the influence that VWM can have on ensemble coding. Williams et al. 
(2021) found that holding a single item in VWM (e.g., a colored shape) 
biased performance on a subsequent ensemble task. Observers per
formed reported the average orientation of a group of lines (presented in 
two colors) in tandem with a VWM task (i.e., remember a colored 
shape). Reports for average line orientation were biased in the direction 
of the lines that matched the color of the shape held in VWM (though 
this color was irrelevant to the ensemble task). This demonstrates that 
the contents of VWM can bias ensemble representations. 

Another study by Brand et al. (2012) found that having a VWM 
template can aide performance on an ensemble task when the 
to-be-averaged items match a feature of that template. Participants were 
shown differently sized circles in two colors and were asked to report the 
average size of the circles in one of the colors. On some trials, partici
pants were cued as to what color would be tested, and participants had 
improved accuracy in the cued compared to the un-cued condition. In 
these cases, VWM representations can be detrimental to or aide per
formance on an ensemble task, depending on what features are relevant 
in the ensemble display. Together, these studies clearly demonstrate the 
bi-directional influence that VWM representations and ensemble coding 
have on each other, thus revealing the routine interactions that take 
place between these different cognitive systems. 

2. Capacity limits in ensemble coding 

Although there are bi-directional interactions between VWM and 
ensemble coding, it is still unclear if there are cases when VWM may 
have a more direct involvement in ensemble coding (e.g., the degree to 
which VWM contents can be used to generate, rather than simply bias, 
ensemble percepts). Although ensemble coding is thought to circumvent 
capacity limits to VWM, capacity limits have been observed in ensemble 
coding tasks (Maule and Franklin, 2016; Ji et al., 2018). For example, 
Maule and Franklin (2016) found that observers were subsampling (i.e., 
using only some of the available information) from arrays of colored 
circles when engaging in an average color task. Specifically, they found 
that a model that randomly subsampled two out of 16 available circles 
produced results equivalent to that of the participants. Similarly, Ji et al. 
(2018) found a capacity limit for the number of faces that could be in
tegrated in an average facial expression task, as task performance reli
ably decreased as the set size of the face stimuli increased. 

Importantly, studies that encountered capacity limitations or found 
that participants were engaging in subsampling strategies did not 
investigate the possible involvement of VWM in such processes (e.g., 
participants might have been subsampling from the array and holding 
those items within VWM to then generate an ensemble percept). As the 
capacity limitations found in the aforementioned ensemble studies are 
similar to what has been found with VWM (i.e., less than 4 items), 
investigating the possible role of VWM in explaining these ensemble 
capacity limitations is critical. 

Recently, we encountered a capacity limit in a cross-modal ensemble 
coding task where observers were asked to extract the average taste (i.e., 
sweetness) from visually presented food items (Gillies et al., 2023). 
Notably, visual features alone do not fully convey the taste of different 
foods, and thus to make this judgement, observers must use visual 

information to cue knowledge of taste stored in long term memory 
(LTM). We found evidence that observers had a limited ability to 
perceive the average sweetness of visually presented foods. Of interest, 
under simultaneous viewing conditions (all stimuli presented at once), 
observers were limited in the number of items they could incorporate 
into their cross-modal ensemble percepts. Specifically, when observers 
were shown six food pictures, they could only use information from four 
items (i.e., they may have been subsampling due to a capacity limita
tion). This four-item capacity limit persisted even with increased 
viewing time of the ensemble displays (1s and 1.5s). 

This capacity limit is unlike other forms of “abstract” ensemble 
coding studied previously (i.e., average object animacy, average eco
nomic value of items; Yamanashi-Leib et al., 2016, 2020), even though 
those studies also used complex stimuli (i.e., multifeatured objects) and 
in a paradigm that inspired the experimental design we used in Gillies 
et al. (2023). For both object animacy and economic value, observers 
were able to integrate information from all six available items to extract 
summary statistics under brief viewing durations, showing no evidence 
of subsampling from the displays. 

The possible involvement of VWM in this ensemble coding task is 
worth investigating, given the capacity limit. Indeed, the four-item ca
pacity limit in Gillies et al. (2023) may be reflective of a VWM capacity 
limit, which is also limited to about four items (e.g., Luck and Vogel, 
1997). The viewing times used in Gillies et al. (2023) were certainly long 
enough time to make several saccades (1 and 1.5s), and thus participants 
could have serially fixated on a subsample of the items in the displays, 
and then used the information held in VWM to aid in the formation of 
the ensemble percept. Here we conduct two experiments to investigate 
the role of VWM in explaining the capacity limitation observed in the 
ensemble coding of average sweetness. 

3. The current study 

If participants are using VWM to aide their performance on the 
ensemble sweetness task, then they should have explicit memory for the 
items within the ensemble display. To investigate this possibility, we 
had observers perform both an ensemble sweetness task and a VWM task 
to ascertain 1) how many items they integrated into their ensemble 
percepts, and 2) how much information they remembered from the 
displays. If VWM fully supports performance on the ensemble task, then 
individuals with higher VWM capacities should therefore show 
improved performance on the ensemble task compared to lower capacity 
individuals. To preview our results, we found that individual differences 
in VWM performance could not predict differences in performance on 
the ensemble task. 

4. Experiment 1 

The purpose of Experiment 1 was to investigate if VWM explains 
performance on the ensemble sweetness task from Gillies et al. (2023). 

For the ensemble task, participants were shown visual arrays con
taining multiple food pictures and were asked to rate their average 
sweetness. The food pictures used in this experiment and Experiment 2 
were previously validated (see supplementary materials for Gillies et al., 
2023). That is, an independent group of raters viewed the 150 food 
pictures one-at-at-time and rated them on their perceived sweetness on a 
scale from 0 (not sweet at all) to 10 (extremely sweet). Inter-rater reli
ability indexed by an intraclass correlation coefficient was high, ICC =
0.98 (Cicchetti, 1994), demonstrating that participants reliably rated 
perceived sweetness, and, importantly, that there was excellent agree
ment across these raters in their sweetness percepts of individual food 
items (Gillies et al., 2023). 

To determine how much information observers were integrating 
from the food ensembles, we used a subset manipulation (Yamana
shi-Leib et al., 2016, 2020; Gillies et al., 2023). On some trials, observers 
were only shown a subset of the whole ensemble (one, two, or four items 
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from the six-item ensemble). Importantly, their responses on these 
subset conditions were only ever compared to the predicted sweetness of 
the full ensemble (derived from the individual food ratings conducted by 
the independent group of observers in Gillies et al., 2023). Specifically, 
for each participant and set size, we calculated the correlation between 
the participants’ reported sweetness ratings and the predicted sweetness 
ratings for the full 6-item ensemble. As the subsets are not representative 
of the predicted sweetness of the full ensemble, this analysis simulates a 

subsampling strategy. If participants are only using some of the available 
information to make their ensemble judgements, the correlation be
tween participants’ actual and predicted sweetness ratings would 
plateau at smaller subset sizes (see Fig. 1). If, however, participants are 
able to integrate information from multiple items, the correlation would 
increase with increasing subset size. We predict that we will replicate 
the 4-item capacity limit found in Gillies et al. (2023). 

For the VWM task, participants were again shown the same 

Fig. 1. Subset Manipulation 
A) The pattern of results that would occur if participants sampled only one item from an array. This pattern would show that observers are unable to integrate 
information from multiple items when making their ensemble judgements. 
B) The pattern of results that would occur if participants successfully integrated all six items in the array. Here, the correlation would increase at larger set sizes as 
more information becomes available to participants. This pattern would show that observers could use all the information available to them when making their 
ensemble judgements. 
C) The predicted pattern of results where the magnitude of the correlation increases until subset size 4. 
D) An illustration of the subsampling manipulation used. Shown in the pink boxes are the sweetness scores of each individual food picture. As more information is 
made available, the average sweetness of the display gets closer to the predicted sweetness rating of the full six-item ensemble. 
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ensembles as in the ensemble task but were then presented with a two- 
alternative forced choice (2AFC) membership identity task (see Yama
nashi Leib et al., 2016, 2020). After the ensemble display disappeared, 
two items were presented (one from the previous ensemble and one from 
a different ensemble), and participants indicated which one they 
remembered seeing previously. From this, we can calculate how VWM 
capacity (the number of items recognized) changes with set size (see 
‘Analysis 2AFC task’ below). 

If VWM performance explains performance on the ensemble task, we 
should see an increase in VWM capacity as subset size increases, and, 
like performance on the ensemble task, this increase would plateau at 
subset size four. Moreover, if VWM fully supports performance on the 
ensemble task, then we should see a relationship between VWM capacity 
and ensemble coding abilities. Specifically, individuals with higher 
VWM capacities should be able to incorporate more information into 
their ensemble percepts. If we see evidence for both hypotheses, then we 
can conclude that VWM explains performance on the ensemble sweet
ness task. If, however, we observe a dissimilar pattern of results across 
ensemble integration and VWM capacity and/or no relationship be
tween ensemble performance and VWM capacity, then we can conclude 
that VWM does not explain how observers perform on the ensemble 
sweetness task. 

5. Methods 

5.1. Participants 

Participants were recruited via Prolific (2021), an online 
data-collection platform. Participants were pre-screened to ensure they 
met the following criteria: they currently reside in the US or Canada, 
were fluent in English, were between the age of 18–40 years old, had no 
head injuries, no ongoing mental health issues or illness, no cognitive 
impairments or dementia, and had normal or corrected-to-normal 
vision. They were paid $15.78 CAD per hour. As the experiment took 
15–20 min to complete, most participants made approximately $4.00 
CAD. Each participant provided electronic consent to the protocol 
approved by the Research Ethics Boards of the University of Toronto 
prior to participation. 

A total of 88 participants were recruited, and six were excluded (see 
‘Participant Exclusion Criteria’ below for details), leaving a final sample 
size of 82. An a-priori power analysis was conducted using G*Power3 
(Faul et al., 2007) to determine how many participants would be needed 
for a correlation analysis with a medium effect size (r = 0.30). The re
sults showed that a sample size of 82 would be required to obtain a 
power of .80. 

The mean age of the final sample was 29.01 years, with 46 females, 
35 males, and one who declined to answer. Seventy-six participants 
were right-handed, and six were left-handed. All had normal or 
corrected-to-normal vision, with 30 wearing glasses, 13 wearing con
tacts, and the rest requiring neither. 

5.2. Participant Exclusion Criteria 

To ensure that participants were not randomly clicking on the 
average sweetness rating scale (see ‘Stimuli’ below), their responses on 
the subset size one condition were correlated with the predicted 
sweetness values of the single items. Given that previous results showed 
that participants were in high agreement with one another as to how 
sweet the individual food items were (Gillies et al., 2023), it is reason
able to predict that the current participant ratings would be highly 
correlated with the individual sweetness scores. Indeed, the average 
correlation between the two was r = 0.83 (without exclusions). Partic
ipants who had a correlation below an r of 0.70 were excluded from 
further analysis. Using this criteria, six participants were removed from 
further analysis, leaving a final sample size of 82. 

5.3. Apparatus 

All data were collected online. Participants were directed from 
Prolific to Qualtrics (2020), where they read and digitally signed the 
consent form and answered demographics questions. After submitting 
the Qualtrics survey, they were redirected to Pavlovia (Peirce et al., 
2019) which was used to run the experiment. The experiment was coded 
using Psychopy3 (Peirce et al., 2019). Both Mac and Windows machines 
were permitted (desktop or laptop). As this experiment was conducted 
online, the distance between the observer and the screen could not be 
reliably controlled, but participants were always asked to sit about an 
arms distance from their computer screen. In addition, participants were 
instructed to perform the experiment in a distraction-free environment, 
with their computer plugged in and charging and the screen brightness 
set to maximum. They were asked to maintain fixation on a central cross 
throughout the experiment. 

5.4. Stimuli 

Stimuli were taken from the Food-Pics database (Blechert et al., 
2019) and the FoodCast research image database (FRIDa) (Foroni et al., 
2013). The image database we put together contained 127 pictures from 
the Food-Pics database (Blechert et al., 2019), 34 of which were edited 
in photoshop (Adobe Photoshop, 2004) to ensure that only a single food 
item was present in each picture. We used an additional 23 pictures from 
the FRIDa database (Foroni et al., 2013), four of which were edited in 
Photoshop. The final 150 food stimuli were taken from a larger pool of 
food pictures (see Gillies et al., 2023, Supplementary Materials). Over a 
series of pilot studies, participants rated the perceived sweetness of food 
pictures, and we selected 150 images (from an initial 547 pictures) 
across a broad range of sweetness ratings with low standard deviations 
of response. Importantly, an intraclass correlation coefficient (ICC) score 
of 0.98 (Cicchetti, 1994) showed that observers were in high agreement 
with one another. 

Ensemble Creation. From the 150 images, we randomly drew 6 
images without replacement, yielding 25 sets of images with 6 images 
per set. Each set was assigned a predicted sweetness rating, calculated by 
averaging the individual ratings of the six items within the set (see 
Gillies et al., 2023). No one item in the set was within 0.50 units of the 
predicted average sweetness rating. The ensembles’ predicted sweetness 
ratings were normally distributed around a mean of 4.93. For the subset 
conditions, one, two, or four items were randomly drawn from the full 
set (with replacement). 

The ensemble arrays were presented in a 3 × 2 grid in the middle of 
the screen on a grey background (see Fig. 2). The location of each item 
was randomly determined within the grid. Each stimulus was 0.30 ×
0.225 times the screen’s height. Each item in the grid was separated both 
horizontally and vertically by 0.05 times the screen’s height. A white 
fixation cross (0.04 × 0.04 times the screen’s height) was presented in 
the middle of the screen. 

For the ensemble task, a clickable rating scale was used to obtain 
participant ratings after the presentation of the ensemble. The scale 
ranged from 0 to 10, and the numbers were presented on the scale below 
21 corresponding tick marks (each half value was represented by a tick 
mark). Participants made their ratings by clicking directly on the scale. 
Scale granularity was set to 0.25, to allow participants to use whole 
values, half values, and quarter values. The instructions above the scale 
read “On average, how sweet were those foods? Click on the rating scale 
to make your response. 0 = not sweet at all, 10 = extremely sweet.” 
Participants were encouraged to use the full range of the scale. 

For the VWM task, two items were shown on the left and right of the 
central fixation cross after the presentation of the ensemble (see Fig. 2). 
The images were separated by .10 times the screens height. Above the 
images in white font were instructions reading “Which food do you 
remember seeing?” and participants used their left and right arrow keys 
to select an item. 
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5.5. Procedure 

Task order was counterbalanced between participants. Both the 
ensemble and VWM tasks began the same way. Participants were asked 
to maintain fixation on a central cross for 500ms and were then shown 
the full six-item ensemble or a subset of the full ensemble (one, two, or 
four items) for 1 s, followed by a 500ms delay in which only the fixation 
cross was present. 

For the ensemble task, participants were instructed to make judge
ments about the average sweetness of groups of food items that could 
vary in set size and were asked to maintain fixation on the central cross. 
Following the delay, the rating scale appeared, and participants clicked 
directly on the rating scale to make their average sweetness judgements. 
The rating scale was present until a response was made (via mouse 
click). Participant responses were not meant to be speeded, and as such, 
participants were not instructed to respond as quickly as possible. Thus, 
we did not examine reaction time as a dependent measure in this study. 
Participants saw all 25 ensembles at each set size, for a total of 100 trials 
for the ensemble task. 

For the VWM task, participants were instructed to remember the 
individual items from groups of food pictures that could vary in set size, 
while maintaining fixation on a central cross. Following the 500ms 
delay, participants were then shown two items on the left and right sides 
of the central cross, respectively. One of the items was from the previous 
ensemble display (the target), and the second was an item from one of 
the other ensembles (selected randomly) (the distractor). The positions 
of the target and distractor were randomly selected. Using the left and 
right arrow keys on their keyboards, participants indicated which food 
picture they remembered seeing. Both the target and distractor were 
present until the participant made a response. As in the ensemble task, 
responses were not speeded. Participants saw all 25 ensembles at each 
set size for a total of 100 trials for the VWM task. 

6. Analysis 

6.1. Ensemble task 

To examine performance on the ensemble task, for each participant 
and set size condition, we calculated the correlation between the par
ticipants’ reported sweetness ratings and the predicted sweetness ratings 
of the whole set (i.e., the 6-item ensemble). Next, to normalize the dis
tribution of Pearson coefficients, Pearson correlations were converted to 
Fisher Z scores. This left us with four Fisher Z scores per participant, one 
for each set size. We then examined the relationship between the 
magnitude of the correlation (Fisher Z scores) and the number of items 
shown to individuals using a linear regression. 

This linear regression was then followed up with three planned 
paired-sample t tests (i.e., comparing set size 1 to 2, 2 to 4, and 4 to 6). 
This analysis enabled us to identify if there was a significant increase in 
the magnitude of the correlation between all the subset conditions (i.e., 
if participants were incorporating more information as it was made 
available to them), or if the magnitude plateaus after a certain subset 
size (i.e., not all the information was incorporated into their ensemble 
judgements). To correct for multiple comparisons between the planned 
paired-sample t-tests, the Bonferroni corrected alpha value was set to 
0.016 (i.e., for three comparisons). As we anticipated null results (i.e., no 
significant difference between set sizes 4 and 6), we also report Bayes 
factors for each comparison. Specifically, we report BF10 for significant 
results, and values greater than 3 can be interpreted as substantial evi
dence in favor of the alternative hypothesis (Wagenmakers et al., 2011; 
Jeffreys, 1961). For non-significant results, we report BF01, and values 
greater than 3 can be interpreted as substantial evidence in favor of the 
null hypothesis (Wagenmakers et al., 2011; Jeffreys, 1961). See Tables 1 
and 2 for a summary of the Bayesian results for Experiments 1 and 2, 
respectively. 

Fig. 2. Ensemble Task and VWM Task Sequences 
A) The ensemble task used in both Experiments 1 and 2. This is an example of the full six-item ensemble condition. Participants viewed the images for 1s and then 
made an average sweetness rating using a rating scale from 0 (not sweet at all) to 10 (extremely sweet). 
B) The VWM task (2AFC) used in Experiment 1. This is an example of the full six-item condition. Participants viewed the images for 1s, and were then shown two 
images, and indicated which image was from the previous set. 
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6.2. VWM task 

For each participant and set size condition (1, 2, 4, 6), we calculated 
the proportion of correct responses. Next, we determined each partici
pant’s VWM capacity for each set size condition using the following 
formula: 

VWM capacity=(current set size ∗ (proportion correct − .50)

∗ 2) (Yamanashi − Leib et al., 2016).

As in the ensemble task, we ran a linear regression to examine the 
relationship between VWM capacity and set size, followed by the same 
three planned paired-sample t-tests (again corrected for multiple 
comparisons). 

6.2.1. VWM split 
To further examine the relationship between VWM capacity and 

ensemble coding, we median-split participants into high capacity and 
low-capacity groups based on their average VWM capacity at set sizes 
four and six. To establish the reliability of this measure, we then per
formed a split-half analysis. Responses were ordered by set size and were 
then randomly assigned an odd or even value. Therefore, one half of the 
split had 12 trials per condition, and the other half had 13. 

Next, we defined measures of “VWM ability” (the average VWM 
capacity at set size 1 and 2 subtracted from the average VWM capacity at 
set size 4 and 6) and “ensemble ability” (the average Fisher Z at set size 1 
and 2 subtracted from the average Fisher Z at set size 4 and 6). 

Table 1 
Summary of Results in Experiment 1 A summary table of the frequentist test 
results and Bayesian results for all the comparisons made for the ensemble and 
VWM tasks.  

Experiment 1 Ensemble Task Bayesian paired sample t-tests 

Comparison Direction 
of Effect 

Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
Evidence 

Set size 1 to 2 Increase Significant BF10 =

74.78 
Very strong 
evidence for the 
alternative 
hypothesis 

Set size 2 to 4 Increase Significant BF10 =

1672.74 
Extreme 
evidence for the 
alternative 
hypothesis 

Set size 4 to 6 No 
difference 

ns BF01 = 8.17 Substantial 
evidence for the 
null hypothesis 

VWM Task Bayesian paired sample t-tests 
Comparison Direction 

of effect 
Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
evidence 

Set size 1 to 2 Increase Significant BF10 =

619,989.91 
Extreme 
evidence for the 
alternative 
hypothesis 

Set size 2 to 4 Increase Significant BF10 = 3.09 
× 1012 

Extreme 
evidence for the 
alternative 
hypothesis 

Set size 4 to 6 No 
difference 

ns BF01 = 1.41 Anecdotal 
evidence for the 
null hypothesis 

VWM Task Split Bayesian independent samples t-tests 
Comparison 

(low vs. high- 
capacity 
participants) 

Direction 
of effect 

Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
evidence 

VWM Ability Increase Significant BF10 = 6.83 
× 1015 

Extreme 
evidence for the 
alternative 
hypothesis 

Ensemble 
Ability 

No 
difference 

ns BF01 = 4.13 Substantial 
evidence for the 
null hypothesis  

Table 2 
Summary of Results in Experiment 2 A summary table of the frequentist test 
results and Bayesian results for all the comparisons made for the ensemble and 
VWM tasks.  

Experiment 2 Ensemble Task Bayesian paired t-tests 

Comparison Direction 
of effect 

Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
evidence 

Set size 1 to 2 Increase Significant BF10 =

12.71 
Strong evidence 
for the 
alternative 
hypothesis 

Set size 2 to 4 Increase Significant BF10 =

79.20 
Very strong 
evidence for the 
alternative 
hypothesis 

Set size 4 to 6 No 
difference 

ns BF01 = 2.54 Anecdotal 
evidence for the 
null hypothesis 

VWM Task Bayesian paired t-tests 
Comparison Direction 

of effect 
Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
evidence 

Set size 1 to 2 Increase Significant BF10 =

262,909.79 
Extreme 
evidence for the 
alternative 
hypothesis 

Set size 2 to 4 Increase Significant BF10 =

84,14.28 
Extreme 
evidence for the 
alternative 
hypothesis 

Set size 4 to 6 No 
difference 

ns BF01 = 5.02 Substantial 
evidence for the 
null hypothesis 

VWM Task (lenient grading) Bayesian paired t-tests 
Comparison Direction 

of effect 
Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
evidence 

Set size 1 to 2 Increase Significant BF10 =

42,824.47 
Extreme 
evidence for the 
alternative 
hypothesis 

Set size 2 to 4 Increase Significant BF10 = 5.22 
× 106 

Extreme 
evidence for the 
alternative 
hypothesis 

Set size 4 to 6 Increase Significant BF10 =

64.25 
Very strong 
evidence for the 
alternative 
hypothesis 

VWM Task Split Bayesian independent samples t-tests 
Comparison 

(low vs. high- 
capacity 
participants) 

Direction 
of effect 

Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
evidence 

VWM Ability Increase Significant BF10 =

11,286.45 
Extreme 
evidence for the 
alternative 
hypothesis 

Ensemble 
Ability 

No 
difference 

ns BF01 = 4.03 Substantial 
evidence for the 
null hypothesis 

VWM Task Split (lenient grading) Bayesian independent samples t-tests 
Comparison 

(low vs. high- 
capacity 
participants) 

Direction 
of effect 

Frequentist 
Test Result 

Bayes’ 
Factor 

Strength of 
evidence 

VWM Ability Increase Significant BF10 =

3095.64 
Extreme 
evidence for the 
alternative 
hypothesis 

Ensemble 
Ability 

No 
difference 

ns BF01 = 2.83 Anecdotal 
evidence for the 
null hypothesis  
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Differences between high and low-capacity individuals on both mea
sures were examined with two independent sample t-tests. 

7. Results and discussion 

7.1. Ensemble task 

The average Fisher Z scores were fit by a linear regression, r2 = 0.14, 
p < .001, indicating that participants were getting closer to the predicted 
sweetness rating as more information was made available to them (see 
Fig. 3A). 

The planned paired t-tests revealed that there was a significant in
crease in Fisher Z scores between set size one and two [t (81) = 3.79, p <
.001, Cohen’s d = 0.42, 95% CI [0.19, 0.64], BF10 = 74.78], and be
tween set size two and four [t (81) = 4.71, p < .001, Cohen’s d = 0.52, 
95% CI [0.29, 0.75], BF10 = 1672.64]. However, there was no signifi
cant difference in Fisher Z from set size four to six [t (81) = 0.09, p = .93, 
Cohen’s d = 0.01, 95% CI [-0.21, 0.23], BF01 = 8.17]. As predicted, 
observers could only integrate information from up to four out of the six 
available items, replicating the capacity limit observed in Gillies et al. 
(2023). 

7.2. VWM task 

The linear regression between VWM capacity and subset size 
revealed that participants remembered more information as set size 
increased, r2 = 0.46, p < .001 (see Fig. 3B). Normality was violated for 
one of the planned comparison t-tests, so reported here is the non- 
parametric equivalent (Wilcoxon Signed Rank Test). Planned compari
sons revealed that participants remembered significantly more infor
mation from set size one to two [Z (81) = 7.86, p < .001, rank-biserial 
correlation = 1, BF10 = 619,989.91], and from set size two to four [t 
(81) = 9.79, p < .001, Cohen’s d = 1.08, 95% CI [0.81, 1.35], BF10 =

3.09 × 1012]. However, there was no significant difference in capacity 
from set size four to six [t (81) = 1.93, p = .06, Cohen’s d = 0.21, 95% CI 
[-0.43, 0.01], BF01 = 1.41]. 

This pattern, which is strikingly similar to that observed in the 
ensemble task (but note that the BF for the set size 4–6 comparison does 
not indicate substantial evidence in favor of the null hypothesis), sug
gests that VWM capacity may explain the capacity limit observed in 
cross-modal ensemble taste perception. To provide more definitive 
support for this notion, we split individuals into “high capacity” and 

“low capacity” groups. If VWM resources explain the capacity limit 
encountered in the average taste ensemble task, then individuals with 
high VWM capacities should have greater “ensemble abilities” than low- 
capacity individuals, and hence will be able to encode and maintain 
more food pictures in VWM, translating into more items integrated into 
their ensemble percepts. 

7.3. VWM split 

Despite being restricted by a low trial number for the split half an
alyses, split half reliability for VWM capacity was significant, r2 = 0.06, 
p = .02. We also applied the Spearman-Browne formula to correct for the 
noise ceiling. Using this formula, the r2 = 0.15. For this analysis, par
ticipants with an average VWM capacity greater than 2.61 were 
considered “high capacity” (N = 43), and those with a capacity of less 
than 2.61 were considered “low capacity” (N = 39). Despite low- 
capacity individuals having significantly lower “VWM ability” 
compared to high-capacity individuals [t (80) = 11.72, p < .001, 
Cohen’s d = 2.59, 95% CI [1.99, 3.18], BF10 = 6.83 × 1015], there was 
no difference in “ensemble ability” between high and low-capacity in
dividuals [t (80) = 0.34, p = .73, Cohen’s d = 0.08, 95% CI [-0.36, 0.51], 
BF01 = 4.13] (see Fig. 4). This suggests that VWM capacity was not 
related to participants’ performance on the ensemble task, as both low 
and high-capacity individuals had remarkably similar ensemble 
abilities. 

8. Experiment 2 

The results of Experiment 1 suggest that differences in VWM capacity 
do not explain performance on the ensemble task. However, there is a 
possibility that participants were not relying on item-specific memory in 
the VWM task. Rather, the task could potentially be accomplished by 
using simple item features (e.g., color or shape). For example, if a 
participant was shown an array of foods that contained an egg and were 
then shown an egg and a cucumber (the distractor), they could get the 
answer correct by recognizing that they were shown something yellow, 
even if they were not certain that what they were shown was an egg. As 
such, performance on the VWM task may not reveal if participants have 
explicit memory for the items that were shown to them in the ensembles. 

Experiment 2 circumvents this potential issue by using a free recall 
task rather than a 2AFC task. After being shown the ensemble arrays, 
participants were asked to list the food items they remembered seeing. 

Fig. 3. Results for Experiment 1 
A) The results of the ensemble task. The Y axis represents the average of the participants Fisher Z scores for that particular set size condition. The magnitude of the 
correlations increased with set-size but peaked at a maximum of four items. This provides evidence that observers were limited in the number of items they could 
incorporate into their cross-modal ensemble percepts. 
B) The results of the VWM task. VWM capacity increased with the number of items shown, and then plateaued after four items. Error bars represent Morey’s Standard 
Error of the Mean (SEM) (Morey, 2008). ***p < .001. 
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This task enabled us to determine what items participants had explicit 
memory for from the preceding array. To preview, we find a pattern of 
results identical to that of Experiment 1. 

9. Methods 

9.1. Participants 

Participants were recruited from Prolific (2021) using the same 
pre-screening procedure and payment details as in Experiment 1. Par
ticipants who completed Experiment 1 were not permitted to participate 
in Experiment 2. 

A total of 92 participants were recruited, and eight were excluded 
(see ‘Participant Exclusion Criteria’ in Experiment 1 for details), leading 
to a final sample of 84. (The target for the final sample was 82, but an 
additional two people were accidently permitted to take part in the 
experiment. Their inclusion did not change the pattern of results.) 

The mean age of the final sample was 30.85 years, with 53 females 
and 31 males. Eighty-one were right-handed, and three were left- 
handed. All had normal or corrected-to-normal vision, with 33 wear
ing glasses, 14 wearing contacts, and the rest with neither. 

9.2. Apparatus 

The apparatus was identical to that used in Experiment 1. 

9.3. Stimuli 

The images and ensembles were identical to those used in Experi
ment 1. The only difference was the replacement of the 2AFC task used 
in Experiment 1 with a single-item naming task and a free recall task. 

9.4. Procedure 

The ensemble task was identical to that used in Experiment 1. 
For the single-item naming task, participants were instructed to view 

a single food picture on the screen and then type out the name of the 
food on the following screen. They were told to be specific with their 
answers (e.g., “granny smith apple” as opposed to “apple”, or “mandarin 
orange” as opposed to “orange”). Participants were asked to maintain 
fixation on a white cross for 500ms and were then shown a single food 
picture for 1 s, followed by a 500ms delay where only the fixation cross 
was visible. Following the delay, participants indicated which food they 
saw using their keyboard, with no time limit. On the bottom of the 

Fig. 4. Results for Experiment 1: split by VWM capacity 
A) VWM task performance split by high- and low-VWM capacity individuals. The plot on the left shows how VWM capacity changes with subset size. The plot on the 
right shows how VWM ability (the average VWM capacity for subset 1 and 2 subtracted from the average VWM capacity for subset 4 and 6) differs by VWM capacity 
(high or low). Participants with low VWM capacity had significantly lower VWM ability than those with high VWM capacities. 
B) Ensemble task performance split by high- and low-VWM capacity individuals. The plot on the left shows how the magnitude of the correlation changes with subset 
size. The plot on the right shows how ensemble ability (the average Fisher Z for subset size 1 and 2 subtracted from the average Fisher Z for subset 4 and 6) differs 
based on VWM capacity (high or low). Despite a difference in VWM ability, participants did not significantly differ in their ensemble abilities. 
Error bars represent Morey’s SEM (Morey, 2008). ***p < .001; ns = not significant. 
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screen was a clickable instruction in white font reading “click here to 
move on”. Participants saw all 150 food pictures for a total of 150 trials 
(see Fig. 5). 

For the free recall task, participants were instructed to remember the 
individual items from groups of food pictures that could vary in set size, 
while maintaining fixation on a central cross (which was present 500ms 
prior to the appearance of the ensemble and remained on screen until 
the response screen appeared). Following a 500ms delay, participants 
indicated which foods they recalled being shown using their keyboard. 
Participants could see their typed responses and could use the backspace 
key to edit a response if they made a typo. There was no time limit 
imposed on the response screen. On the bottom of the screen was a 
clickable instruction in white font reading “click here to move on”. 
Participants saw each of the 25 ensembles at each subset size except the 
subset size one condition for a total of 75 trials (see Fig. 5). 

Participants completed the three tasks in one of two possible task 
orders, 1) single-item naming task, free recall task, ensemble task; or 2) 
ensemble task, single-item naming task, free recall task. Task order was 
counterbalanced across participants. 

10. Analysis 

10.1. Ensemble task 

Experiment 2 uses the same set of analyses as described in Experi
ment 1. 

10.2. VWM free recall task 

Four independent scorers were used to manually mark each partic
ipant’s responses on the free recall task. As we could not assume par
ticipants would name every food picture in exactly the same way, their 
responses on the free recall task were compared to their own responses 
on the single-item naming task. A response was considered “correct” if 

the description participants gave was close to their original description 
in the single-item naming task. Answers were marked incorrect if the 
description was of a different food, was too vague, or was missing 
important modifiers. For example, answering “apple” in the free recall 
task if that same item was originally called “granny smith apple” in the 
single-item naming task would be marked incorrect, as its unclear what 
type of “apple” the participant was remembering (e.g, granny smith 
apples are more sour than red delicious apples). Prior to grading the 
files, all the scorers first marked one test file, and they were found to be 
in high agreement with one another (ICC = 0.96). 

As a more lenient measure of VWM capacity, we also determined the 
number of items answered on each trial, regardless of the accuracy of the 
response. Our rationale for doing so was guided by the observation that 
the representation of an incorrectly recalled food item could still be used 
to generate a summary percept of average sweetness in the ensemble 
task. Indeed, an incorrect food representation could have a similar 
sweetness value compared with a correct representation (e.g., recalling 
“chocolate cookie” when the correct item was “chocolate donut”). In 
such cases, the incorrect representation could still be beneficial in the 
ensemble task, despite it not being accurate. To account for this, the 
more lenient analysis assumes that any item that was held in VWM may 
be used in the ensemble task, such that the number of items recalled 
across the subset sizes is more important than how precise or accurate 
that information is. We then determined the average number of items 
that were correctly recalled for each participant and set size condition 
(1, 2, 4, and 6). Responses on the single-item naming task were used as 
data for the set size one condition. As we were comparing participant 
responses on the free recall task to responses on the single-item naming 
task, all responses on the single-item naming task were counted as 
“correct” unless left blank. Of note, no participant gave answers that 
were “incorrect” (e.g., labelling a banana as a cake) during the single- 
item naming task. We then performed the same set of analysis as 
described in Experiment 1. 

Fig. 5. Single-Item Naming and Free Recall Task Trial Sequences 
A) The single-item naming task used in Experiment 2. Participants viewed one item for 1s, and then typed what they thought the item was. 
B) The VWM task (free recall) used in Experiment 2. This is an example of the full six-item condition. Participants viewed the images for 1s, and were then asked to 
type out what items they recalled from the previous display. 
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10.3. VWM split 

The VWM split proceeded in the same way as in Experiment 1. 
In addition to splitting by VWM capacity calculated from perfor

mance on the free recall task, we also repeated the analysis using the 
more lenient criteria of average number of items answered (where ac
curacy was not a factor). For this analysis, as done previously, “VWM 
ability” was defined as the average number of items answered at set size 
1 and 2 subtracted from the average number of items answered at set 
size 4 and 6. 

11. Results and discussion 

11.1. Ensemble task 

As in Experiment 1, participants incorporated more information as it 
was made available to them, r2 = 0.08, p < .001 (see Fig. 6A). Planned 
paired-sample t-tests showed there was a significant increase in the 
magnitude of the correlation between set size one to two [t (83) = 3.19, 
p < .01, Cohen’s d = 0.35, 95% CI [0.12, 0.57], BF10 = 12.71], and 
between set size two to four [t (83) = 3.81, p < .001, Cohen’s d = 0.17 
95% CI [0.19, 0.64], BF10 = 79.20]. Finally, there was no significant 
difference in the magnitude of the correlation between set size four and 
six [t (83) = 1.58, p = .12, Cohen’s d = 0.17, 95% CI [-0.04, 0.39], BF01 
= 2.54], replicating the capacity limit observed in Experiment 1 and in 
previous research (Gillies et al., 2023). Note that, while the Bayes Factor 
comparing the difference from set size four to six only provides anec
dotal evidence in favor of the null hypothesis, the effect is actually in the 
opposite direction expected for ensemble integration (i.e., a decrease in 
the Fisher Z value from set size four to six). Therefore, there is no evi
dence that observers could integrate any more than four out of the six 
available items into their percepts of ensemble sweetness. 

11.2. VWM free recall task 

The linear regression revealed that participants remembered more 
information as set size increased, r2 = 0.57, p < .001 (see Fig. 6B). 
Normality was violated for all the planned comparison t-tests, so re
ported here are the non-parametric equivalent tests (Wilcoxon Signed 
Rank Test). Planned comparisons revealed that participants remem
bered significantly more information from set size one to two [Z (83) =
7.95, p < .001, rank-biserial correlation = 0.99, BF10 = 262,909.79 ], 
and from set size two to four [Z (83) = 7.81, p < .001, rank-biserial 
correlation = 0.98, BF10 = 84,14.28]. Similar to Experiment 1, there 

was no significant increase from set size four to six [Z (83) = 1.41, p =
.26, rank-biserial correlation = 0.15, BF01 = 5.02]. 

11.3. VWM free recall task, lenient criteria 

The linear regression revealed that the number of items participants 
answered increased with increasing set sizes, r2 = 0.72, p < .001 (see 
Fig. 6C). Normality was violated for the planned comparison t-tests, so 
reported here are the non-parametric equivalents (Wilcoxon Signed 
Rank Tests). There was a significant increase in the number of items 
answered between set size 1 and 2 [Z (83) = 7.96, p < .001, rank biserial 
correlation = 1, BF10 = 42,824.47], set size 2 and 4 [Z (83) = 7.86, p <
.001, rank biserial correlation = 1, BF10 = 5.22 × 106 ], and between set 
size 4 and 6 [Z (83) = 3.32, p < .001, rank biserial correlation = 0.45, 
BF10 = 64.25]. 

11.4. VWM free recall split 

The split-half reliability for VWM capacity was high, r2 = 0.80, p <
.001, indicating that our measure of VWM capacity was internally 
consistent. Using the Spearman-Browne formula, the r2 = 0.90. For this 
analysis, participants with an average VWM capacity greater than 1.90 
were considered “high capacity” (N = 42), and those with a capacity of 
less than 1.90 were considered “low capacity” (N = 42). 

The normality assumption was violated for one of the comparisons, 
so reported here is the non-parametric equivalent for that comparison 
(Welch’s test). Despite low-capacity individuals having significantly 
lower “VWM ability” compared to high-capacity individuals [t (49.67) 
= 8.53, p < .001, Cohen’s d = 1.86, 95% CI [1.29, 2.42], BF10 =

11,286.45], there was no difference in “ensemble ability” between high 
and low-capacity individuals [t (82) = 0.44, p = .70, Cohen’s d = 0.10, 
95% CI [-0.32, 0.52], BF01 = 4.03] (see Fig. 7). 

This replicates the findings in Experiment 1, and together these two 
experiments show that VWM capacity is not related to ensemble ability, 
as both low and high-capacity individuals did not differ in their 
ensemble perception abilities. 

11.5. VWM lenient grading split 

The split half reliability for this measure showed that it was consis
tent, r2 = 0.43, p < .001. Using the Spearman-Browne formula, the r2 =

0.62. 
For this analysis, participants with an average VWM capacity greater 

than 2.55 were considered “high capacity” (N = 42), and participants 

Fig. 6. Results for Experiment 2 
A) The results of the ensemble task. The Y axis represents the average of the participants Fisher Z scores for that particular set size condition. The magnitude of the 
correlations increased with set-size but peaked at a maximum of four items. This provides evidence that observers were limited in the number of items they could 
incorporate into their cross-modal ensemble percepts. 
B) The results of the VWM task. VWM capacity increased with the number of items shown, and then plateaued after four items. 
C) The results of the VWM task with lenient criteria. Capacity increased with the number of items shown but did not plateau (likely because accuracy was not taken 
into account). 
Error bars represent Morey’s SEM (Morey, 2008). **p < .01; ***p < .001. 
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with an average VWM capacity less than 2.55 were considered “low 
capacity” (N = 42). The normality assumption was violated for one of 
the comparisons, so reported here is the non-parametric equivalent for 
that comparison (Welch’s test). 

Despite a significant difference in VWM ability between low and high 
capacity individuals [t (62.26) = 9.42, p < .001, Cohen’s d = 2.17, 95% 
CI = [1.59, 2.74], BF10 = 33,095.64 ], there was no significant differ
ence in ensemble ability between these two groups [t (82) = 1.00, p =
.32, Cohen’s d = 0.22, 95% CI = [-0.21, 0.65], BF01 = 2.83] (see Fig. 8). 
Therefore, even when ignoring accuracy in the free recall task with the 
use of a very lenient metric to define VWM capacity, there was no clear 
relationship between how many items people recalled and their per
formance on the ensemble task. Together with the free recall results and 
the results of Experiment 1, this suggests that VWM capacity does not 
adequately explain the capacity limitation observed in the cross-modal 
perception of ensemble taste. 

12. General discussion 

Across two experiments, we showed that participants were limited in 
their ability to form cross-modal ensemble percepts for taste from 
visually presented information. As shown previously (Gillies et al., 

2023), observers could only integrate taste information from four out of 
six available food items. Here we examined if this capacity limitation in 
ensemble encoding could be explained by VWM resources. Interestingly, 
although the pattern of VWM performance mirrored performance on the 
ensemble task (i.e., an increase in the number of items integrated until a 
plateau at subset size four on the ensemble task, and an increase in the 
number of items remembered until a plateau at subset size four on the 
VWM task in both Experiment 1 and 2), we subsequently found that 
there was no relationship between VWM capacity and cross-modal 
ensemble perception of taste. Specifically, individuals with higher 
VWM capacities did not perform differently on the ensemble task than 
low-capacity individuals. This lack of a relationship between VWM and 
ensemble coding was found when we defined VWM capacity using both 
a 2AFC recognition task, and a more nuanced free recall task. Although 
our data cannot definitively state whether or not VWM is necessary to 
perform the ensemble task, it can certainly state that it is not sufficient. 

13. Did we adequately and reliably measure VWM? 

One possible reason we did not find a relationship between VWM and 
ensemble coding may be that our measure of VWM was inadequate. In 
Experiment 1, observers did not need to hold item-level information in 

Fig. 7. Results for Experiment 2: split by VWM capacity 
A) VWM task performance split by high- and low-VWM capacity individuals. The plot on the left shows how VWM capacity changes with subset size. The plot on the 
right shows how VWM ability (the average VWM capacity for subset 1 and 2 subtracted from the average VWM capacity for subset 4 and 6) differs by VWM capacity 
(high or low). Participants with low VWM capacity had significantly lower VWM ability than those with high VWM capacities. 
B) Ensemble task performance split by high- and low-VWM capacity individuals. The plot on the left shows how the magnitude of the correlation changes with subset 
size. The plot on the right shows how ensemble ability (the average Fisher Z for subset size 1 and 2 subtracted from the average Fisher Z for subset 4 and 6) differs 
based on VWM capacity (high or low). Despite a difference in VWM ability, participants did not significantly differ on their ensemble abilities. 
Error bars represent Morey’s SEM (Morey, 2008). ***p < .001; ns = not significant. 
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VWM to perform above chance on the 2AFC task. Rather, participants 
could have used low-level feature information (e.g., color, shape) to 
perform the 2AFC task. Importantly, these low-level features do not 
contribute useful information about the taste of food pictures. While 
some visual features may contribute to taste perception (Spence et al., 
2010; Spence, 2015) (e.g., red strawberries are sweeter than pale ones), 
information conveyed by these features is not consistent across different 
food items (e.g., red foods are not always sweet). Therefore, even if 
low-level feature information was used in the VWM task, this informa
tion would not be helpful to participants in the ensemble task. 

However, even if we concede that it is possible that observers are 
relying on low-level features in Experiment 1 to perform the VWM task, 
this strategy was not possible in Experiment 2. Experiment 2 used a free 
recall task, meaning that observers could not rely on low-level visual 
features to recall items they had seen in the previous food ensemble. 
Rather, participants would need to retrieve item-specific information 

from VWM. As the pattern of results was identical between Experiment 1 
and Experiment 2, which used different tasks to define VWM capacity, 
we can confidently conclude that we did indeed adequately measure 
VWM, and such resources are not sufficient to explain the capacity 
limitation observed in the cross-modal perception of ensemble taste. 

Another point to consider is that our measure of VWM capacity may 
not reliably measure individual differences (Hedge et al., 2018). How
ever, split-half reliability for the VWM capacity measure was significant 
for both Experiment 1 and 2. Split-half reliability was lower in Experi
ment 1, but the number of trials was lower than other studies that used 
indirect measures of VWM capacity (e.g., Xu et al., 2018). Yet despite 
being limited by the number of trials, split-half reliability was still sig
nificant in Experiment 1. Taken together, we demonstrate good 
split-half reliability across both measures of VWM, and thus conclude 
that we were able to reliably examine individual differences in VWM 
capacity in both Experiments 1 and 2. Given that the significant 

Fig. 8. Results for Experiment 2: split by VWM capacity (lenient criteria) 
A) VWM task performance split by high- and low-VWM capacity individuals. The plot on the left shows how VWM capacity changes with subset size. The plot on the 
right shows how VWM ability (the average VWM capacity for subset 1 and 2 subtracted from the average VWM capacity for subset 4 and 6) differs by VWM capacity 
(high or low). Participants with low VWM capacity had significantly lower VWM ability than those with high VWM capacities. 
B) Ensemble task performance split by high- and low-VWM capacity individuals. The plot on the left shows how the magnitude of the correlation changes with subset 
size. The plot on the right shows how ensemble ability (the average Fisher Z for subset size 1 and 2 subtracted from the average Fisher Z for subset 4 and 6) differs 
based on VWM capacity (high or low). Despite a difference in VWM ability, participants did not significantly differ on their ensemble abilities. 
Error bars represent Morey’s SEM (Morey, 2008). ***p < .001; ns = not significant. 
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differences in the number of items recalled between low- and 
high-capacity individuals did not translate into a significant difference 
in ensemble perception between the groups, we again conclude that the 
capacity limitation observed in ensemble taste perception cannot be 
fully explained by differences in VWM resources across participants. 

14. Other instances where VWM does not contribute to 
ensemble coding 

Our finding that VWM capacity differences did not fully explain 
ensemble coding abilities is in line with previous studies. Yamana
shi-Leib et al. (2016, 2020) found that observers were sensitive to ab
stract features of groups of objects (i.e., average animacy, average cost). 
Animacy and cost cannot be computed using information from a single 
feature (e.g., color, size), rather, the perception of animacy or cost likely 
arises from the interactions of several features, with cost likely relying 
more on non-visual semantic information. Utilizing the ensemble task 
design used in the present work, they found that observers could inte
grate information from all the available objects in an ensemble (i.e., 6 
objects), superseding their measured VWM capacities. Furthermore, 
observers had poor memory for individual items relative to their 
ensemble coding abilities, as participants could not remember all the 
items that they were nonetheless able to incorporate into their ensemble 
percepts. 

In the above studies, it is clear that VWM alone cannot explain per
formance on the ensemble coding tasks. These results are consistent with 
what we find regarding the relationship between VWM and ensemble 
taste perception in the present study. However, these previous studies 
also observed seemingly capacity-unlimited ensemble coding abilities, 
which is in contrast to the capacity limited results we observe when 
observers are required to extract summary information of taste from 
visually presented food items. While a capacity limitation of about four 
ensemble items seems qualitatively similar to the classic finding of a 
VWM capacity limit (Luck and Vogel, 1997), subsequent analyses (see 
Figs. 4, 7 and 8) revealed that VWM resources do not explain this 
ensemble capacity limitation. This raises the intriguing question of 
which cognitive processes are driving this capacity limitation. 

15. Which cognitive processes explain the ensemble capacity 
limit? 

Presently, it is unclear if this capacity limit generalizes to all cross- 
modal ensemble coding, or if it is something that is specific to the 
interaction between taste and vision. To our knowledge, no other studies 
examining interactions between different sensory modalities and 
ensemble coding have been published. Thus, further studies are neces
sary to determine if this generalizes to other forms of cross-modal 
ensemble processing (e.g., can observers extract average weight, 
which is initially derived from tactile information, from visually pre
sented object pictures?). 

One possible explanation for the capacity limit is that it is not a limit 
at all, but a byproduct of observers engaging in a purposeful sub
sampling strategy. Subsampling can be used to produce accurate sum
mary statistics (Marchant et al., 2013; Lau and Brady, 2018). However, 
our study was designed in such a way that subsampling cannot be a 
viable strategy, as using only a subset of the available information 
produces inaccurate summary statistics. Therefore, a subsampling 
strategy here is not optimal and would leave observers at a disadvan
tage. The only optimal strategy to produce an accurate summary statistic 
in the current paradigm is to incorporate information from all six items. 
Other studies that use both complex stimuli and abstract ensemble tasks 
(e.g., average lifelikeness, average economic value; Yamanashi-Leib and 
colleagues, 2016 & 2020) found that observers did not have to rely on a 
subsampling strategy, as they were able to incorporate information from 
all the available items. Given this, we think it unlikely that subsampling 
items from the ensemble display explains the capacity limitation we 

observe here and in our previous study (Gillies et al., 2023). 
How do observers determine sweetness from visually presented in

formation? Some visual features can contribute to taste perception 
(Spence et al., 2010; Spence, 2015) (e.g., red strawberries are sweeter 
than pale ones). However, the information conveyed by these visual 
features is not consistent (e.g., red foods are not always sweet). As such, 
the visual features associated with a food’s taste vary across food cate
gories such that an ensemble value for multiple foods would not be 
related to the shared visual features of those foods. While it is unclear 
precisely what type of process observers use to extract stored taste 
values, it is plausible that observers did rely on their VWM to hold 
item-level information, and then used this information to aide in 
retrieving representations of sweetness associated with those items. 
However, given the lack of a relationship between VWM and high-level 
ensemble coding observed here (and in previous studies; Yamana
shi-Leib et al., 2016, 2020), the locus of the bottleneck that produces the 
capacity limit is not likely to be at the stage of encoding individual items 
into VWM. Given this, we would like to highlight several possible can
didates for the source of the bottleneck. 

One possible candidate relates to a bottleneck at the perceptual 
stage. More specifically, the capacity limit may emerge as a failure of 
parallel visual processing of multiple features across many food items, as 
there are no visual features that convey sweetness on their own. Parallel 
processing mechanisms may encounter a difficulty in pooling sensory 
signals across the display, and observers would in this case be forced to 
subsample from the display. As such, parallel processing may constrain 
the number of visual cues that an observer can integrate at a time to 
trigger the necessary cross-modal retrieval of sweetness information that 
is needed to compute an average sweetness. 

Alternatively, another possible candidate relates to the interaction of 
multiple working memory systems. Specifically, we speculate that par
ticipants may: 1) encode item-level information into VWM, and then 2) 
use that information to guide the retrieval of stored taste information, 
and finally 3) hold that taste information within another working 
memory system, specifically gustatory working memory (GWM). We 
contend that it is possible that the capacity limitation observed in 
ensemble taste perception may be due to a bottleneck encountered 
within GWM (see Fig. 9). Indeed, while only a few studies have inves
tigated the idea of a short-term storage system for taste, the little work 
that has been done suggests that GWM is limited to about three tastes 
(Lim et al., 2022; Daniel and Katz, 2018). 

To test the capacity of GWM, Lim et al. (2022) had participants taste 
colorless, odorless liquids that were either sweet, salty, sour, or bitter. 
Tastes were presented in sequence at differing set sizes (i.e., one to five 
tastes). Participants were then presented with a probe taste, and they 
indicated if that taste was present in the previous sequence of tastes. 
Accuracy on the probe task decreased as set size increased, approaching 
chance performance around set size three. While it is quite under
studied, the existing research converges on the idea that GWM is ca
pacity limited, like other working memory systems. The crucial point 
here is that the operation of a limited capacity working memory system 
on its own (be it visual or gustatory) may not be sufficient to explain the 
capacity limitation observed in ensemble taste perception. Instead, it 
could be the coordinated interaction between distinct working memory 
systems (i.e., visual and gustatory) that leads to a bottleneck in pro
cessing and manifests as an ensemble capacity limitation. 

Just holding the visual information in VWM is not a guarantee that it 
can be successfully converted to taste information in GWM. Studies have 
found that working memory systems are multiplexed, with dissociable 
storage mechanisms for separate sensory information (e.g., Crottaz-
Herbette et al., 2004; Fougnie et al., 2015; Fougnie and Marois, 2011; 
Katus and Eimer, 2018; Cocchini et al., 2002). Interestingly, the capacity 
for the sensory storages is not unanimous within individuals, and thus 
having a large capacity in one sensory working memory system does not 
guarantee an equally large capacity in another sensory working memory 
modality. This suggests that, even if an individual has a large VWM 
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capacity, this individual may very well have a small GWM capacity. 
Another possibility to consider is the potential involvement of verbal 

working memory. In the free recall task used in Experiment 2, rather 
than holding the information in VWM, participants may have attempted 
to label each item using verbal working memory. Indeed, we did ask 
participants to produce written answers. Research has shown that 
working memory is modality specific (Crottaz-Herbette et al., 2004; 
Fougnie et al., 2015; Fougnie and Marois, 2011; Katus and Eimer, 2018; 
Cocchini et al., 2002), and we cannot assume that verbal and visual 
working memory ability correlate perfectly with one another. This leads 
to the question of whether or not participants use their verbal working 
memory during ensemble encoding, and whether a bottleneck in the 
former system explains the capacity limitation we observe in the 
perception of ensemble taste. To examine the contribution of verbal 
working memory, a future study can incorporate an articulatory sup
pression task (Baddeley et al., 1975) during the ensemble and free recall 
phases of the experiment. Of note, we are not suggesting that partici
pants used either verbal or visual working memory on their own, but 
that they may have engaged in a number of different cognitive strate
gies. In this case, it is possible that multiple different systems interact 
during ensemble coding. 

If GWM or verbal working memory is the limiting factor, then there 
should be a relationship between individuals’ modality-specific working 
memory resources and their ability to produce a summary statistic for 
taste from visual information. This could be the case whether or not 
GWM or verbal working memory performance predicts VWM perfor
mance (i.e., individuals with high VWM ability may or may not also have 
high GWM and/or verbal working memory abilities). Alternatively, as 
alluded to above, it could be the interactive operation of all three 
working memory systems that explains the capacity limitation observed 
in ensemble taste processing. Another possibility is that the bottleneck 
may not be due to the interaction between working memory systems 
themselves, but instead on the utilization of their shared contents to 

trigger the retrieval of information from LTM. Further research is needed 
to examine these possibilities, which could entail investigating gusta
tory, verbal, and visual working memory simultaneously in a study 
examining ensemble encoding of average taste from real-life food items. 
Doing so will not only shed light on the cognitive processes underlying 
ensemble taste perception, but also on the mechanics of how different 
cognitive systems (ensemble coding, VWM, GWM, verbal working 
memory, LTM) interact in the production of everyday behavior. 

16. Distinct systems can still interact 

The finding of independence between different neural systems does 
not suggest that these systems do not interact in the production of skilled 
behavior. Take, for example, the operation of the dorsal and ventral 
streams of visual processing (Goodale and Milner, 1992), which mediate 
vision-for-action and vision-for-perception (Goodale and Milner, 2013), 
respectively. Numerous behavioral (e.g., Cant et al., 2005; Hu and 
Goodale, 2000), neuroimaging (e.g., Culham et al., 2003; Valyear et al., 
2006), and, particularly, neuropsychological (e.g., Goodale et al., 1991; 
James et al., 2003) research has demonstrated that these cortical pro
cessing streams can function independently of one another. However, 
despite this independence, the streams are not hermetically sealed from 
each other (Goodale, 2011), and constantly interact in everyday life. 
Indeed, some actions programmed by the dorsal stream rely on input 
from the ventral stream for the successful execution of visuomotor 
behavior. For example, when interacting with objects made of different 
materials (e.g., light objects made of polystyrene, or heavy objects made 
of metal), perceptual processing of the surface and material properties of 
objects carried out by regions in the ventral stream (Cant and Goodale, 
2007, 2011) is communicated to visuomotor regions in the dorsal stream 
to inform the initial grip and load forces needed to successfully pick up 
the objects without having them slip out of your fingers (Buckingham 
et al., 2009; Gallivan et al., 2014). 

Fig. 9. A Proposed Mechanism of Vision-Taste Ensemble Coding 
An illustration of how average sweetness information may be generated. First, observers may hold some of the information in VWM with varying levels of fidelity/ 
precision across the items (the first bottleneck). Then, the visual information is used to cue retrieval of taste from LTM. Next, multiple tastes are held within GWM. 
Another bottleneck may occur at these latter two stages, as participants may fail to retrieve all the tastes from LTM, or they may not be able to hold all the tastes in 
GWM. Last, the average sweetness score is generated using the information held in GWM. Here, VWM alone cannot explain performance on the ensemble sweet
ness task. 
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Translating this line of reasoning to the present study, the finding 
that ensemble perception of average taste is distinct from the operation 
of VWM does not suggest that these two cognitive systems do not 
interact whatsoever. Similarly, the finding that ensemble perception 
does not influence visuomotor behavior (i.e., reaching and grasping) 
does not imply that actions cannot be influenced by the perception of 
summary statistics (e.g., ensemble perception may contribute to 
memory-guided, as opposed to visually-guided, behavior; Fan et al., 
2021). Future studies are needed to determine when and how different 
cognitive systems may interact during ensemble coding. 

17. Conclusion 

In summary, we found that observers were limited in their ability to 
extract average taste (i.e., sweetness) from visually presented food in
formation. Specifically, they were limited in the number of items they 
could incorporate into their cross-modal ensemble percepts. Interest
ingly, individual differences in participants’ VWM capacities did not 
explain performance on the ensemble taste task, showing that VWM 
alone is not sufficient to explain the capacity limit we observed. Instead, 
we speculate that this limit may be related to the interaction between 
multiple working memory systems (VWM, GWM, verbal working 
memory), or in using the output of this interactive processing to retrieve 
cross-modal representations of taste stored in LTM. Given the perva
siveness of ensemble processing (Corbett et al., 2023), it is highly likely 
that the perception of summary statistics influences, and is influenced 
by, several cognitive, motor, and decision-related neural processes and it 
is the task of future studies to determine the boundary conditions un
derlying such interactive processing. 
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