How to Wrangle Data using R with tidyr and dplyr

Ken Butler

March 30, 2015

- 80% of data analysis: getting the data into the right form
- maybe 20% is making graphs, fitting models etc.
- thus, think about the 80%, "data wrangling".

Hadley Wickham

Inventor of:

- tidyr
- dplyr
- ggplot2
- stringr

and other things besides.

- Every value belongs to a *variable* and an *observation*.
- Variables in columns.
- Observations in rows.
- If this is done, data called "tidy", ready for further analysis.
- If not, have "untidy" data, needs tidying.
- "Tidy" depends (somewhat) on kind of analysis you want to do.

Gratuitous image

То	ronto Pears	on Man	ual Obse	rvatio	ns - 200	6.xl	5x -	Lil	bre	Dff	ice	Ca	alc																	
<u>F</u> ile	Edit Viev	w <u>I</u> nse	ert F <u>o</u> rn	nat <u>T</u>	Tools 🖸	ata	y	⊻in	dov	v	He	lp																		
	· 🖻 • 🕻	. 🖄		Ner 🗲	ə 👼	ABC	, 8	<u>sc.</u>	1	6	Ę	a	ĥ	÷	4		Ъ	• e		6	:11	. :1		8	1	\Leftrightarrow		-	1	2
				Fee 1				er.		0			-		_					07	5 V	ē			¥.	V	~			
6	Calibri		v 1	2	- 🔺	A	4	Ā			8						J	%	0.000	00. →0	1	(5	15		•	E.	- 🎭	-	E	
A24		•	# Σ	=																										
	A	в	с	D	E		F	G	н	1	J	ĸ	L	м	N	0	P	0	R	s	т	U	v	w	x	Y	z	AA	AB	AC
1	site	year	month	day	weathe	r	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
2	6158733	2006	2	16	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
3	6158733	2006	2	17	1	35	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	6158733	2006	4	3	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
5	6158733	2006	4	12	1	85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
6	6158733	2006	5	17	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	0	0	0	0	0	0
7	6158733	2006	5	31	1	85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0
8	6158733	2006	6	2	1	85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
9	6158733	2006	6	28	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0
10	6158733	2006	6	29	1	35	0	0	0	0	0	0	0	0	0	0	0	2	0	2	2	2	0	0	0	0	0	0	0	0
11	6158733	2006	6	30	1	35	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
12	6158733	2006	7	1	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
13	6158733	2006	7	4	1	35	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	6158733	2006	7	10	1	85	0	0	0	0	0	0	0	0	0	2	2	0	0	3	0	0	0	2	0	0	0	0	0	0
15	6158733	2006	7	15	1	35	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	6158733	2006	7	20	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
17	6158733	2006	7	23	1	85	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0
18	6158733	2006	8	2	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
19	6158733	2006	9	8	1	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
20	6158733	2006	10	3	1	35	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	6158733	2006	10	4	1	35	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22								T							+															

- Data from Pearson Airport, 2006
- Manual observer notes whether thunder or lightning observed within an hour. 2 is "thunderstorm", 3 is "intense thunderstorm".
- Spreadsheet contains only days where at least one thunderstorm hour was recorded.
- Columns labelled 1–24 indicate whether thunderstorm was observed in that hour (eg. "1" means midnight-1:00 am, "17" is 4:00–5:00 pm).
- Cols 1–24 all represent whether or not thunderstorm observed: not tidy!

Reading in the data

• Save as .csv, then:

```
thunder=read.csv("thunder.csv",header=T)
thunder[1:6,1:9]
```

##		site	year	month	day	weather	X1	Х2	XЗ	X4
##	1	6158733	2006	2	16	85	0	0	0	0
##	2	6158733	2006	2	17	85	2	0	0	0
##	3	6158733	2006	4	3	85	0	0	0	0
##	4	6158733	2006	4	12	85	0	0	0	0
##	5	6158733	2006	5	17	85	0	0	0	0
##	6	6158733	2006	5	31	85	0	0	0	0

- Hour columns have gained an X.
- All those columns show whether/not thunderstorm recorded.
- Need to be combined together into one, with indication of which hour.

- Combine columns that all measure same thing.
- Input: data frame, what makes columns different, what makes them same, columns to combine:

• hour and is.thunder are new variables; X1 through X24 disappear.

Some of the result

thunder.2[c(1:6,33:39),c(2:4,6:7)]

##		year	month	day	hour	is.thunder
##	1	2006	2	16	X1	0
##	2	2006	2	17	X1	2
##	3	2006	4	3	X1	0
##	4	2006	4	12	X1	0
##	5	2006	5	17	X1	0
##	6	2006	5	31	X1	0
##	33	2006	7	10	Х2	0
##	34	2006	7	15	Х2	2
##	35	2006	7	20	Х2	0
##	36	2006	7	23	Х2	0
##	37	2006	8	2	Х2	0
##	38	2006	9	8	Х2	0
##	39	2006	10	3	Х2	0

- Take out rows with no thunderstorm
- Remove columns site and weather
- Obtain actual hour from eg. X6
- Construct actual date and time of thunderstorm hour
- Make pretty picture of data.

Uses ideas from ${\tt tidyr}$ (extracting actual hour) and ${\tt dplyr}$ (the rest).

Take out rows with no thunderstorm

• Use filter from dplyr with condition saying what rows you want to keep:

```
library(dplyr)
```

```
thunder.3=filter(thunder.2,is.thunder>0)
head(thunder.3)
```

##		site	year	month	day	weather	hour	is.thun	der
##	1	6158733	2006	2	17	85	X1		2
##	2	6158733	2006	7	15	85	Х2		2
##	3	6158733	2006	10	4	85	Х6		2
##	4	6158733	2006	7	4	85	Х7		2
##	5	6158733	2006	10	3	85	Х7		2
##	6	6158733	2006	10	4	85	Х7		2

Doing things in sequence

So far, we did

```
thunder.2=gather(thunder,hour,is.thunder,X1:X24)
thunder.3=filter(thunder.2,is.thunder>0)
```

This uses too many temporary variables. Compare with

```
thunder %>%
 gather (hour, is.thunder, X1:X24) %>%
  filter(is.thunder>0) %>%
 head()
       site year month day weather hour is.thunder
##
## 1 6158733 2006
                     2 17
                                85
                                     Х1
                                                 2
##
  2 6158733 2006
                     7 15
                                85
                                     X2
                                                 2
  3 6158733 2006
                    10 4
                                85 X6
                                                 2
##
                                                 2
## 4 6158733 2006
                    7 4
                                85 X7
                    10 3
                                                 2
## 5 6158733 2006
                                85 X7
## 6 6158733 2006
                    10
                         4
                                8.5
                                                 2
                                     Χ7
```

- Read as "and then".
- Allows layout of whole sequence of operations readably: "start with thunder, and then...".
- Output from one part of chain is input to next part, thus:
 - thunder is input to gather
 - output from gather (unnamed) input to filter
 - output from filter input to head
- Data frame input to all of these functions not specified: taken from output of previous part of chain.

Getting rid of site and weather

• Uses select from dplyr. Add it to the chain:

```
thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
select(c(-site,-weather)) %>%
head()
```

##		year	month	day	hour	is.thunder
##	1	2006	2	17	X1	2
##	2	2006	7	15	Х2	2
##	3	2006	10	4	X6	2
##	4	2006	7	4	Х7	2
##	5	2006	10	3	Х7	2
##	6	2006	10	4	Х7	2

Using column names in select selects just those. Putting minus sign before column *omits* column named.

Splitting up x and hour number

- Uses separate from tidyr.
- Separate:
 - what to separate (hour),
 - what to call the separated bits (junk and hour.num)
 - and where to separate (after 1st character).
- Add to chain:

```
thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
select(c(-site,-weather)) %>%
separate(hour,into=c("junk","hour.num"),
    sep=1) %>%
head()
```

##		year	month	day	junk	hour.num	is.thunder
##	1	2006	2	17	Х	1	2
##	2	2006	7	15	Х	2	2
##	3	2006	10	4	Х	6	2
##	4	2006	7	4	Х	7	2
##	5	2006	10	3	Х	7	2
##	6	2006	10	4	Х	7	2

• Can do the usual: thunder.1=thunder %>% ... to save in variable thunder.1.

• Or:

```
thunder %>%
gather(hour,is.thunder,X1:X24) %>%
filter(is.thunder>0) %>%
select(c(-site,-weather)) %>%
separate(hour,into=c("junk","hour.num"),
    sep=1) -> thunder.1
```

"... and then save in thunder.1".

Debugging a chain

- One line at a time.
- Do each step of the chain, and convince yourself that you have the right thing.
- Can use head() as the last step to show the first few lines of the result, eg.

```
thunder %>%
  gather(hour, is.thunder, X1:X24) %>%
  filter(is.thunder>0) %>%
  head()
##
        site year month day weather hour is.thunder
## 1 6158733 2006
                      2 17
                                 8.5
                                      Х1
                                                  2
                     7 15
                                                  2
##
  2 6158733 2006
                                 85 X2
##
  3 6158733 2006
                     10 4
                                85 X6
                                                  2
## 4 6158733 2006
                    7 4
                                85 X7
                                                  2
                     10 3
                                85 X7
                                                  2
##
  5 6158733 2006
                                                  2
## 6 6158733 2006
                     10
                          4
                                 85
                                      Χ7
```

Yes, we only have lines where there actually is thunder.

- Turn year, month, day, hour into a date and time
- throw away junk
- maybe throw away is.thunder

Dates and times

 R has class POSIXct: represents date-times as seconds since Jan 1 1970:

```
d=as.POSIXct("2015-03-30 15:00")
d
### [1] "2015-03-30 15:00:00 EDT"
print.default(d)
### [1] 1.428e+09
### attr(,"class")
### [1] "POSIXct" "POSIXt"
### attr(,"tzone")
## [1] ""
```

Dates and times (2)

 Also class POSIX1t: represents as list, easier for extracting month, day etc:

```
d=as.POSIX1t("2015-03-30 15:00")
d
## [1] "2015-03-30 15:00:00 EDT"
d$mday
## [1] 30
d$hour
## [1] 15
```

Time zones

- These classes handle time zones: unless you specify one, uses local time zone for your computer.
- Also handles daylight savings:

```
v=c("2015-03-30 15:00", "2015-03-20 15:00",
    "2015-03-01 15:00")
as.POSIXct(v)
## [1] "2015-03-30 15:00:00 EDT"
## [2] "2015-03-20 15:00:00 EDT"
## [3] "2015-03-01 15:00:00 EST"
as.POSIXct (v, tz="CET")
## [1] "2015-03-30 15:00:00 CEST"
## [2] "2015-03-20 15:00:00 CET"
## [3] "2015-03-01 15:00:00 CET"
c(as.POSIXct(v,tz="CET"))
## [1] "2015-03-30 09:00:00 EDT"
## [2] "2015-03-20 10:00:00 EDT"
## [3] "2015-03-01 09:00:00 EST"
```

• Thunderstorm data: date-time-as-number (POSIXct) fine. 2

Construct hours

- 1,2,...,24 are 12:00-1:00am, ..., 11:00pm-midnight.
- To align date and time, use *starting* hour (subtract 1 from hour).
- Paste on ":00:00":

```
tt=thunder.1$hour.num
tt=paste0(as.numeric(tt)-1,":00:00")
head(tt)
## [1] "0:00:00" "1:00:00" "5:00:00"
## [4] "6:00:00" "6:00:00"
```

- Paste year-month-day together separated by –.
- Paste the two results together, and pass into as.POSIXct.
- In a chain: mutate creates new variables from old.

Making date-times

```
thunder.1 %>%
mutate(tt=paste0(as.numeric(hour.num)-1,":00:00")
mutate(dd=paste(year,month,day,sep="-")) %>%
select(c(tt,dd)) %>%
head()
```

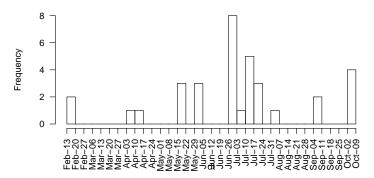
##		tt	dd
##	1	0:00:00	2006-2-17
##	2	1:00:00	2006-7-15
##	3	5:00:00	2006-10-4
##	4	6:00:00	2006-7-4
##	5	6:00:00	2006-10-3
##	6	6:00:00	2006-10-4

That works. (Compare with data source, reading down columns.)

Paste together into one

```
thunder.1 %>%
mutate(tt=paste0(as.numeric(hour.num)-1,":00:00")
mutate(dd=paste(year,month,day,sep="-")) %>%
mutate(dt=as.POSIXct(paste(dd,tt))) %>%
select(dt,is.thunder) %>%
head()
```

##			dt	is.thunder
##	1	2006-02-17	00:00:00	2
##	2	2006-07-15	01:00:00	2
##	3	2006-10-04	05:00:00	2
##	4	2006-07-04	06:00:00	2
##	5	2006-10-03	06:00:00	2
##	6	2006-10-04	06:00:00	2


Yep. Save it.

```
thunder.1 %>%
mutate(tt=paste0(as.numeric(hour.num)-1,":00:00")
mutate(dd=paste(year,month,day,sep="-")) %>%
mutate(dt=as.POSIXct(paste(dd,tt))) %>%
select(dt,is.thunder) -> thunder.2
```

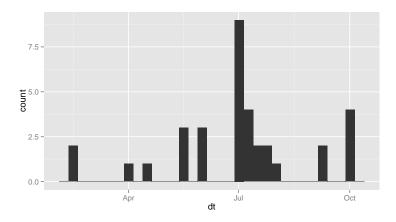
What time of year do thunderstorms happen?

- Make a histogram of the dates
- They are actually numbers, so this works (with fiddling).

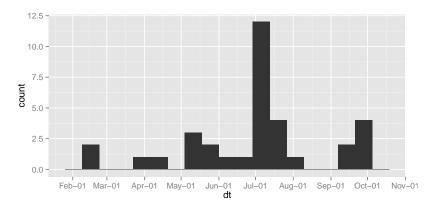
```
attach(thunder.2)
hist(dt,breaks="weeks",freq=T,
   format="%b-%d",las=2)
```


Histogram of dt

Jun 26 – July 3: were there really 8 thunderstorm hours?


```
d=c("2006-06-25", "2006-07-04")
dates=as.POSIXct (d)
thunder.2 %>% filter(dt>dates[1],dt<dates[2])</pre>
##
                       dt is.thunder
##
  1 2006-06-29 11:00:00
                                     2
   2 2006-06-30 12:00:00
                                     2
##
## 3 2006-06-29 13:00:00
                                     2
##
   4 2006-06-28 14:00:00
                                     2
   5 2006-06-29 14:00:00
                                     2
##
   6 2006-06-29 15:00:00
                                     2
##
## 7 2006-06-28 20:00:00
                                     2
## 8 2006-07-01 22:00:00
                                     2
```

ggplot and chains


• The ggplot graphing mechanism fits nicely into a chain:

library(ggplot2)

thunder.2 %>% ggplot(aes(dt))+geom_histogram()

Or, tarted up

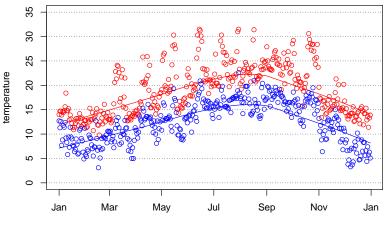
Some different climate data

Daily weather record for one year for a secret location:

```
weather=read.csv("weather_2014.csv",header=T)
names(weather)
```

##	[1]	"day.count"	"day"
##	[3]	"month"	"season"
##	[5]	"l.temp"	"h.temp"
##	[7]	"ave.temp"	"l.temp.time"
##	[9]	"h.temp.time"	"rain"
##	[11]	"ave.wind"	"gust.wind"
##	[13]	"gust.wind.time"	"dir.wind"

Plot daily high and low against date

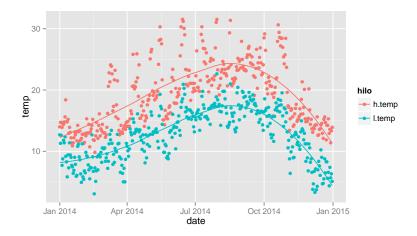

• First need date as date (easier than for time):

```
weather %>%
  mutate(date1=paste("2014",month,day,
      sep="-")) %>%
  mutate(date=as.Date(date1)) -> weather.2
```

Make empty graph, add points and lowess curves in colour:

```
attach(weather.2)
plot(date,h.temp,type="n",ylim=c(0,35),
    ylab="temperature",
    main="Daily max and min temperatures")
grid(NA,NULL,col="black")
points(date,h.temp,col="red")
lines(lowess(date,h.temp),col="red")
points(date,l.temp,col="blue")
lines(lowess(date,l.temp),col="blue")
detach(weather.2)
```

The plot



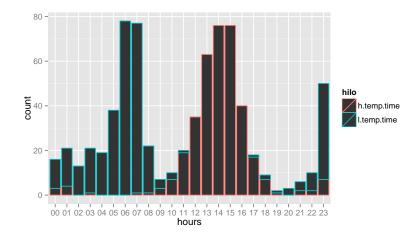
Daily max and min temperatures

date

Same with ggplot

weather.2 %>%
gather(hilo,temp,h.temp:l.temp) %>%
ggplot(aes(date,temp,group=hilo,colour=hilo))+
geom_point()+geom_smooth(se=F)

Time of day of max and min temperature

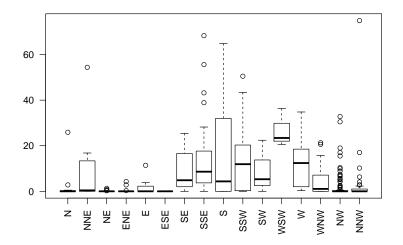

- gather the max and min times, keeping track of whether max or min.
- Pull out the hour of the time of max or min, save:

```
library(stringr)
weather %>%
gather(hilo,times,h.temp.time:l.temp.time) %>%
mutate(hours=str_extract(times,"[0-9]+")) %>%
select(hilo,hours) -> weather.3
```

weather.3 %>% head (10)										
##		hilo	hours							
##	1	h.temp.time	23							
##	2	h.temp.time	11							
##	3	h.temp.time	14							
##	4	h.temp.time	01							
##	5	h.temp.time	12							
##	6	h.temp.time	00							
##	7	h.temp.time	14							
##	8	h.temp.time	13							
##	9	h.temp.time	14							
##	10	h.temp.time	12							

Plot, grouping/colouring by hi/lo

weather.3 %>%
ggplot(aes(hours,group=hilo,colour=hilo))+
geom_histogram()



- Make boxplot of rainfall for each wind direction.
- Set wind directions to be in sensible order:

```
attach(weather.2)
dir2=ordered(dir.wind, levels=
    c("N", "NNE", "NE", "ENE", "E", "ESE", "SE", "S", "SSW", "SW", "WSW", "W", "NNW", "NNW", "NNW")))
```

The boxplot

boxplot (rain~dir2, las=2)

Median and count of rainfall by wind direction

my.sum=function(x) c(md=median(x), n=length(x))
v=aggregate(rain~dir2,FUN=my.sum)

v[1:8	8,]			v[9:16,]								
##		dir2	rain.md	rain.n	##		dir2	rain.md	rain.n				
##	1	N	0.00	18.00	##	9	S	4.35	26.00				
##	2	NNE	0.40	8.00	##	10	SSW	11.90	17.00				
##	3	NE	0.00	25.00	##	11	SW	5.30	11.00				
##	4	ENE	0.00	15.00	##	12	WSW	23.40	3.00				
##	5	E	0.00	11.00	##	13	\overline{W}	12.40	5.00				
##	6	ESE	0.00	2.00	##	14	WNW	1.05	24.00				
##	7	SE	4.85	24.00	##	15	NW	0.00	108.00				
##	8	SSE	8.60	31.00	##	16	NNW	0.00	37.00				

detach (weather.2)

- Rainfall typically highest when wind from South to West, and low when wind from North and East.
- Wind only sometimes out of S or W, but when it is, there can be a lot of rain.
- Can be up to 60 mm of rain in a day.
- Sometimes winter lows as low as 5 C.
- Sometimes summer highs over 30 C (but not often).

```
library(ggmap)
map=get_map(c(-5,40),zoom=6)
```

```
# my.loc is the (hidden) name of the place
ll=geocode(my.loc)
ll
## lon lat
## 1 -8.629 41.16
```

ggmap(map)+geom_point(aes(x=lon,y=lat),
 data=ll,colour="red")

