Snowy winters a historical study of Toronto and area

Bill Gough Ken Butler

February 26, 2014

Introduction

- Data were collected by Bill Gough from 1850-2010.
- Each year, snow-to-rain ratio calculated for December and January; results averaged by decade.
- In addition, each winter was categorized as "snowy", "rainy" or "mixed"; these also summarized by decade.

Data

> snow=read.table("snow.txt",header=T)

> snow

	decade	dec.snow.rain	jan.snow.rain	rainy	snowy	mixed
1	1860	1.2461911	2.086197	1	3	6
2	1870	0.6991449	2.466387	1	3	6
3	1880	1.6049055	1.681356	2	4	4
4	1890	0.6695511	1.802118	2	4	4
5	1900	0.5472127	1.246255	3	1	6
6	1910	0.7520022	2.007601	2	1	7
7	1920	1.7041667	1.553692	2	5	3
8	1930	0.7580128	1.296309	2	3	5
9	1940	0.7796400	0.638236	4	3	3
10	1950	0.7485876	1.551166	3	2	5
11	1960	0.6919866	1.434611	2	2	6
12	1970	0.7176566	1.452458	2	2	6
13	1980	1.0029203	1.352194	3	3	4
14	1990	0.6535492	2.094637	3	2	5
15	2000	0.5535900	1.286375	1	0	9
16	2010	0.7177549	1,138889	3	1	6

$Section \ 2$

Snow-rain ratios

Plot of evolution over time

> attach(snow)

> plot(decade,dec.snow.rain,ylim=c(0,2.5),

- > lines(lowess(decade,dec.snow.rain))
- > points(decade,jan.snow.rain,col="red")
- > lines(lowess(decade,jan.snow.rain),col="red")
- > legend("bottomright",legend=c("December","January"), + fill=c("black","red"))

Lowess curve is smooth curve through trend (not affected by outliers).

Testing for trend

- January ratios almost always higher than December ones.
- January trend appears decreasing.
- December trend appears steady.
- Statistically significant? Mann-Kendall test for trend, based on Kendall correlation with time (not affected much by vertical outliers).
 - > library(Kendall)
 - > MannKendall(dec.snow.rain)

tau = -0.217, 2-sided pvalue =0.26035

> MannKendall(jan.snow.rain)

tau = -0.417, 2-sided pvalue =0.027377

• The January trend significant, but December one clearly not.

Rainy, snowy and mixed winters

- Each winter classified as being rainy, snowy or mixed, and the results summarized by decade.
- The number of years of each type in each decade must sum to 10
- but at first act as if independent.

Plot of evolution over time

decade

- Definite downward trend in number of snowy winters per decade
- Trends of other types of winter less clear.

- > plot(decade,rainy,ylim=c(0,10),
- + ylab="winter type frequency")
- > lines(lowess(decade,rainy))
- > points(decade,snowy,col="red")
- > lines(lowess(decade,snowy),col="red")
- > points(decade,mixed,col="blue")
- > lines(lowess(decade,mixed),col="blue")
- > legend("topleft",legend=c("rainy","snowy","mixed"),
- + fill=c("black","red","blue"))

Mann-Kendall again

- Significance of trends confirmed by Mann-Kendall tests for each:
 - > MannKendall(rainy)

tau = 0.354, 2-sided pvalue =0.090938

> MannKendall(snowy)

tau = -0.402, 2-sided pvalue =0.045753

> MannKendall(mixed)

tau = 0.111, 2-sided pvalue =0.60673

- "Snowy" trend significantly downward (just, at 0.05 level of significance). "Rainy" trend significant at 0.10 level, but "mixed" trend not significant at all.
- Strictly speaking, should adjust for the fact that we've just done 3 tests.

Triangle plot of winter types

What is a triangle plot?

- Used to display three variables that add up to a fixed total.
- In our case, rainy, snowy and mixed must add up to 10.
- A point in the triangle has three coordinates that add up to 1 (10, rescaled).
- Function triangle.plot in the package ade4 draws these, except that first we need a little organization:
 - > winter.type=data.frame(rainy,snowy,mixed)
 - > decade.char=as.character(decade)
 - > library(ade4)
 - > triangle.plot(winter.type,label=decade.char,clabel=1, + scale=F,min3=c(0,0,0),max3=c(1,1,1))

The triangle plot

Comments

- Not all decades shown because they overprint earlier decades. For example, 1880 and 1890 have identical profiles, and so do 1960 and 1970.
- As an example of how the plot works, 2000 had 9 mixed years, 1 rainy year and no snowy years, so it is plotted at 0.9 on the mixed scale, 0.1 on the rainy scale and 0.0 on the snowy scale. (The coordinates are a bit tricky to read off, but it can be done.)
- Likewise, 1920 is plotted at 0.2 on rainy, 0.5 on snowy and 0.3 on mixed.
- Wikipedia calls this a "ternary plot": see http://en.wikipedia.org/wiki/Ternary_plot.
- Trend over time would show up as eg. the early years occupying one part of the triangle and the late years another part. (I don't know a test for this.)
- Also, it would be nice to connect adjacent decades by lines, but I don't know how to make this happen on this triangle plot.

- Add random "jitter" to each observation, to make the hidden ones show up:
 - > rainy.j=jitter(rainy,amount=0.5)
 - > snowy.j=jitter(snowy,amount=0.5)
 - > mixed.j=jitter(mixed,amount=0.5)
 - > winter.j=data.frame(rainy.j,snowy.j,mixed.j)
 - > triangle.plot(winter.j,label=decade.char,clabel=1, + scale=F,min3=c(0,0,0),max3=c(1,1,1))

Improved triangle plot

Data by individual year

By year: organizing

> head(winter)

	year	snow	rain	winter.type
1	1873	223.1	38.2	snowy
2	1871	210.2	84.6	mixed
3	1867	180.5	105.3	mixed
4	1945	168.8	37.4	snowy
5	1860	165.5	79.5	snowy
6	1869	165.4	27.5	snowy

- > o=order(winter\$year)
- > winter2=winter[o,]
- > head(winter2)

	year	snow	rain	winter.type
96	1849	94.2	106.2	rainy
92	1850	97.4	85.4	mixed
87	1851	101.0	103.0	mixed
14	1852	154.3	44.5	mixed
85	1853	102.3	135.5	mixed
51	1854	121.4	86.0	mixed

- Cumulative occurrences of each winter type category against time. Weiss, http://www2.hsu-hh.de/mathstat/ downloads/Folien_09_05.pdf.
- Separate plot on the same graph for each winter type.
- First, define logical variable: true (value 1) if winter of appropriate type, false (value 0) otherwise.

Is it a rainy winter?

For rainy winters:

- > attach(winter2)
- > is.rainy=(winter.type=="rainy")
- > head(data.frame(year,winter.type,is.rainy), n=12)

	year	winter.type	is.rainy
1	1849	rainy	TRUE
2	1850	mixed	FALSE
3	1851	mixed	FALSE
4	1852	mixed	FALSE
5	1853	mixed	FALSE
6	1854	mixed	FALSE
7	1855	snowy	FALSE
8	1856	snowy	FALSE
9	1857	mixed	FALSE
10	1858	rainy	TRUE
11	1859	mixed	FALSE
12	1860	snowy	FALSE

Rainy winters so far

- To count the number of rainy winters so far, we use cumsum to cumulate the values in is.rainy, noting that TRUE has a numerical value of 1 and FALSE a value of 0:
- > rainy.sofar=cumsum(is.rainy)
- > head(data.frame(year,winter.type,is.rainy,rainy.sofar),n=12)

year winter.type is.rainy rainy.sofar

1	1849	rainy	TRUE	1
2	1850	mixed	FALSE	1
3	1851	mixed	FALSE	1
4	1852	mixed	FALSE	1
5	1853	mixed	FALSE	1
6	1854	mixed	FALSE	1
7	1855	snowy	FALSE	1
8	1856	snowy	FALSE	1
9	1857	mixed	FALSE	1
10	1858	rainy	TRUE	2
11	1859	mixed	FALSE	2
12	1860	snowy	FALSE	2

- > is.mixed=winter.type=="mixed"
- > mixed.sofar=cumsum(is.mixed)
- > is.snowy=winter.type=="snowy"
- > snowy.sofar=cumsum(is.snowy)

Checking our work

> head(data.frame(year,winter.type,mixed.sofar,snowy.sofar, + rainy.sofar),n=12)

	year	winter.type	mixed.sofar	<pre>snowy.sofar</pre>	rainy.sofar
1	1849	rainy	0	0	1
2	1850	mixed	1	0	1
3	1851	mixed	2	0	1
4	1852	mixed	3	0	1
5	1853	mixed	4	0	1
6	1854	mixed	5	0	1
7	1855	snowy	5	1	1
8	1856	snowy	5	2	1
9	1857	mixed	6	2	1
10	1858	rainy	6	2	2
11	1859	mixed	7	2	2
12	1860	snowy	7	3	2

Our rate evolution graph

year

If proportion of winters of each type constant over time, traces should be straight. "Snowy" seems to have stopped going up. > plot(mixed.sofar~year,type="n", + ylab="cumulative occurrences") > points(rainy.sofar~year,col="red") > points(mixed.sofar~year,col="black") > points(snowy.sofar~year,col="blue") > legend("topleft",c("rainy","mixed","snowy"), + col=c("red","black","blue"),lty="solid")

To guide eye, add suitably coloured line joining first and last points on trace.

Rate evolution graph with lines

year

> year1=min(year)-1 #1848, no winters of each type > year2=max(year) > lines(c(year1,year2),c(0,max(rainy.sofar)),col="red", + lty="dashed") > lines(c(year1,year2),c(0,max(mixed.sofar)),col="black", + lty="dashed") > lines(c(year1,year2),c(0,max(snowy.sofar)),col="blue", + lty="dashed")

Comments

- If constant proportion of winters of each type over time, red, black and blue traces should each follow their line.
- Mixed (black) trace mostly does.
- Snowy (blue) trace mostly above its line: more snowy winters in past.
- Rainy (red) trace mostly below its line: fewer rainy winters in past.
- Formal test not known (by me), but devise one:
 - Measure observed dissimilarity between traces and lines (eg. area between them)
 - Simulate winters under null hypothesis that proportions not changing
 - Calculate dissimilarities for simulated winters
 - If observed dissimilarities unusually large compared to simulated, reject null and declare that proportions *not* constant.

Snow-rain ratios

Plotting against time

Calculate and attempt to plot against time:

- > srr=snow/rain
- > winter2\$srr=srr
- > plot(srr~year,type="b")
- > lines(lowess(srr~year))

Fixing it up

Some ratios extremely large, so truncate vertical scale:

- > plot(srr~year,type="b",ylim=c(0,3))
- > lines(lowess(srr~year))

Testing for trend

- Small downward trend, apparently consistent amid noise.
- Haul out Mann-Kendall again:
 - > library(Kendall)

```
> res.1=MannKendall(srr)
```

```
> res.1
```

```
tau = -0.146, 2-sided pvalue =0.0054324
```

 Make (approximate) CI for Mann-Kendall correlation (up and down twice SE):

```
> mkci=function(res)
```

```
+ {
```

```
+ sds=sqrt(res$varS)
```

+ ci=c(res\$S-2*sds,res\$S+2*sds)/res\$D

```
+ ci
```

```
+ }
```

• For this example:

```
> mkci(res.1)
```

```
[1] -0.25079964 -0.04099637
```

Theil-Sen

- Downward trend real. How big? Theil-Sen slope:
 - > library(zyp)
 - > zyp.sen(srr~year,data=winter2)\$coefficients

Intercept year

- 7.520284410 -0.003247676
- Decrease about 0.003/year, about 0.52 over the 160 years. In line with lowess.
- Mann-Kendall and Theil-Sen results should be ok: have some serious outliers, but Mann-Kendall, Theil-Sen are resistant to them, and linear trend looks reasonable.

Vineland Station

Why?

- Somewhere rural, not too far from Toronto
- On Niagara escarpment.
- Compare trends with Toronto: are Toronto's trends global warming, or is Toronto an urban heat island?
- Data 1930–2007.
 - > vineland=read.csv("Vineland Control data.csv",header=T)
 - > head(vineland)

	Year	Dec.s.r	Jan.s.r	Туре	Total.snow	Total.rain
1	1930	2.214285714	0.31786217	mixed	83.8	128.0
2	1931	1.485915493	3.50561798	snowy	61.2	43.4
3	1932	0.001766784	0.03573931	rainy	17.4	228.8
4	1933	0.163716814	0.06983240	rainy	20.8	120.1
5	1934	0.587500000	0.23293173	rainy	86.6	89.0
6	1935	1.281250000	0.30825688	mixed	76.0	102.3

Vineland Station winter type

Compute cumulative winters of each type

- > attach(vineland)
- > is.rainy=(Type=="rainy")
- > rainy.sofar=cumsum(is.rainy)
- > is.mixed=Type=="mixed"
- > mixed.sofar=cumsum(is.mixed)
- > is.snowy=Type=="snowy"
- > snowy.sofar=cumsum(is.snowy)

Checking

> head(data.frame(Year,Type,rainy.sofar,mixed.sofar, + snowy.sofar),n=12)

	Year	Туре	rainy.sofar	mixed.sofar	<pre>snowy.sofar</pre>
1	1930	mixed	0	1	0
2	1931	snowy	0	1	1
3	1932	rainy	1	1	1
4	1933	rainy	2	1	1
5	1934	rainy	3	1	1
6	1935	mixed	3	2	1
7	1936	snowy	3	2	2
8	1937	rainy	4	2	2
9	1938	snowy	4	2	3
10	1939	snowy	4	2	4
11	1940	mixed	4	3	4
12	1941	rainy	5	3	4

Rate evolution graph

Year

- In the past, fewer mixed years, more snowy years
- Trend to more mixed, fewer snowy (no snowy since 1977!)
- Similar picture to Toronto.

- > plot(mixed.sofar~Year,type="n",ylab="cumulative occurrence")
- > lines(rainy.sofar~Year,col="red")
- > lines(mixed.sofar~Year,col="black")
- > lines(snowy.sofar~Year,col="blue")
- > legend("topleft",c("rainy","mixed","snowy"),col=c("red","
- > year1=min(Year)-1
- > year2=max(Year)
- > lines(c(year1,year2),c(0,max(rainy.sofar)),col="red",lty=
- > lines(c(year1,year2),c(0,max(mixed.sofar)),col="black",l
- > lines(c(year1,year2),c(0,max(snowy.sofar)),col="blue",lty

Vineland Station: snow-rain ratio

- I don't think I have Toronto snow-rain ratios for January and February separately, so calculated for whole winter each year:
 - > srr=Total.snow/Total.rain
 - > vineland\$srr=srr
 - > plot(srr~Year,type="b",ylab="Snow-rain ratio")
 - > lines(lowess(srr~Year))

Snow-rain ratio plot

Year

- Appears to be no trend:
 - > res.2=MannKendall(srr)

> res.2

tau = -0.00899, 2-sided pvalue =0.91068

> mkci(res.2)

[1] -0.1633543 0.1453723

No evidence whatever.

Comparing Toronto over same years

Extracting the data

- winter2 had Toronto data sorted by years. Select wanted years:
 - > attach(winter2)
 - > toronto=winter2[year>=1930 & year<=2007,]</pre>
 - > detach(winter2)
 - > head(toronto,n=5)

	year	snow	rain	winter.type	srr
57	1930	118.8	82.4	mixed	1.4417476
90	1931	97.8	27.1	snowy	3.6088561
106	1932	88.9	231.8	rainy	0.3835203
165	1933	28.3	113.1	rainy	0.2502210
121	1934	82.9	53.9	mixed	1.5380334
			- •		

> tail(toronto,n=5)

	year	snow	rain	winter.type	srr
118	2003	84.6	29.5	mixed	2.8677966
52	2004	120.7	101.7	mixed	1.1868240
123	2005	82.0	147.9	rainy	0.5544287
129	2006	77.4	94.9	mixed	0.8155954
110	2007	87.9	122.3	rainy	0.7187244

- > attach(toronto)
- > is.rainy=(winter.type=="rainy")
- > rainy.sofar=cumsum(is.rainy)
- > is.mixed=winter.type=="mixed"
- > mixed.sofar=cumsum(is.mixed)
- > is.snowy=winter.type=="snowy"
- > snowy.sofar=cumsum(is.snowy)

Rate evolution graph

year

- Toronto rate evolution graph looks a lot like Vineland Station's, over same time period:
 - a sharp decrease in snowy winters
 - an increase in mixed winters.

year

54 / 55

Comments

- No longer appears to be much of a trend:
 - > res.3=MannKendall(srr)

> res.3

tau = -0.0523, 2-sided pvalue =0.50091

```
> mkci(res.3)
```

[1] -0.2066443 0.1020822

- This confuses me, since the time plot of the full data showed a steady downward trend, with the sharpest decline between about 1940 and 1950. May be because of using less data here.
- Toronto and Vineland Station appear to be showing similar trends since 1930. Both are showing a decrease in the proportion of snowy winters, and an increase in the proportion of mixed winters. Neither location appears to be showing any trend in snow-rain ratios in that period.