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booklet.

� Comments are not required except where indicated, although they may help us mark your answers.

� No error checking is required: assume all user input and all argument values are valid.
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� If you use any space for rough work, indicate clearly what you want marked.



Question 1. [10 marks]

Consider the following part of a CFG for a programming language. We will assume that the rules for
<boolean-expr>, <assignment-stmt>, and <loop-stmt> have been designed correctly. Just as in your
assignment, the semicolon ; is used for sequential composition of statements. The start symbol is <stmts>.

<stmts> --> <assignment-stmt> | <loop-stmt> | <if-stmt> | <stmts> ; <stmts>

<if-stmt> --> if <boolean-expr> then <stmts>

| if <boolean-expr> then <stmts> else <stmts>

There are two serious problems with this grammar: one is related to sequential composition and another
to the if-statements.

Part (a) [5 marks]

Show how to fix the problem with sequential composition by making it left-associative.

Part (b) [5 marks]

Demonstrate that the if-statement causes ambiguity by producing two different parse trees for a string
in the language. Since you don’t know what <boolean-expr>, <assignment-stmt> and <loop-stmt>

generate, you can leave them as leafs in your parse trees. Use the original grammar to generate the trees.



Question 1. (continued)



Question 2. [10 marks]

As we have seen in class, there is a number of ways in which we can specify function parameters in Racket:

• no brackets (Racket will bind parameter to list of arguments)
• (define my-func param some-expr )

• no parameters
• (define my-func () some-expr )

• one or more parameters
• (define my-func (param0 param1 ... paramN ) some-expr )

• two or more parameters with a single “.” somewhere after the first and before the last parameter
• (define my-func (param0 . param1 ... paramN) some-expr )

• (define my-func (param0 param1 . param2 ... paramN) some-expr )

• etc.

where some-expr contains the body of the function

I started writing a CFG for these definitions. Luckily, someone already developed production rules for
<some-expr> that generates all function bodies and for <ident> that generates all identifiers in the language
(including function names, parameter names, etc.), so I can use the non-terminals <some-expr> and
<ident> in my rules. Help me finish the grammar, making sure it generates all required strings as is not
ambiguous.

Terminals: _____________________________________________________________________

plus everything generated by <some-expr>

Non-terminals: _________________________________________________________________

_________________________________________________________________

Start symbol:

_________________________________________________________________

Production rules:

<definition> ::=



Question 2. (continued)



Question 3. [30 marks]

Complete the implementations of the following functions. Note that implementations that do not
follow the requirements in the comments will not earn any marks.

Part (a) [5 marks]

;; (zip-rec xs ys) -> list?

;; xs, ys: list?

;; Returns a list of pairs of corresponding elements in xs and ys.

;; Remaining elements in the longer list are ignored.

;; This is a recursive implementation.

(define (zip-rec xs ys)

(check-expect (zip-rec '(1 2 3) '()) '())

(check-expect (zip-rec '() '(1 2 3)) '())

(check-expect (zip-rec '(1 2 3) '(a b c d)) '((1 . a) (2 . b) (3 . c)))

Part (b) [3 marks]

;; Same as zip-rec above, but non-recursive, uses a single call to map, and no other

;; higher order procedures. In this implementation, assume xs and ys are of the same size.

(define (zip-map xs ys)

(map ____________________________________________________________

____________________________________________________________

____________________________________________________________ ))



Part (c) [5 marks]

; (unzip pairs) -> list?

; pairs: list of pairs

; Returns the result of unzipping pairs, namely, a list of two lists:

; the first sublist is a list of first elements of all pairs, in order,

; and the second sublist is a list of second elements.

; This is a recursive implementation.

(define (unzip pairs)

(check-expect (unzip '()) '(() ()))

(check-expect (unzip '((42 . 24))) '((42) (24)))

(check-expect (unzip '((1 . -1) (2 . -2) (3 . -3) (4 . -4)))

'((1 2 3 4) (-1 -2 -3 -4)))

Part (d) [4 marks]

; This implementation uses map and no recursion.

(define (unzip-hop pairs)



Part (e) [5 marks]

; This implementation uses foldr and no recursion.

(define (unzip-fold pairs)

(foldr



Part (f) [4 marks]

;; (test-apply ok? f g xs) -> list?

;; ok? : procedure?

;; f : procedure?

;; xs : list?

;; Return the list of results obtained as follows: for each element x in xs,

;; apply f if (ok? x) holds, and apply g otherwise.

;; This implementation is not recursive and uses a single call to map and no other

;; higher-order functions.

(define (test-apply ok? f g xs)

(map

(check-expect (test-apply positive? (lambda (x) (* 2 x)) (lambda (x) (- x 10)) '())

'())

(check-expect (test-apply positive? (lambda (x) (* 2 x)) (lambda (x) (- x 10))

'(-1 2 -3 4))

'(-11 4 -13 8))

Part (g) [4 marks]

;; This implementation is not recursive and uses a single call to foldr and no other

;; higher-order functions.

(define (test-apply-f ok? f g xs)

(foldr


