
CSC C24 Winter 2023
Midterm Test

Duration — 90 minutes
Aids allowed: none

Do not turn this page until you have received the signal to start.

Please fill out the identification section above and read the instructions below.

Good Luck!

This exam is double-sided, and consists of 3 questions. When you receive the signal to start, please make
sure that your copy is complete.

� Please, make sure to NOT write anything in the QR code areas.

� Please, use a black or blue pen or a thick in diameter pencil to answer all questions in this
booklet.

� Comments are not required except where indicated, although they may help us mark your answers.

� No error checking is required: assume all user input and all argument values are valid.

� Please, make sure to indent your code properly.

� If you use any space for rough work, indicate clearly what you want marked.

Question 1. [10 marks]

Consider the following part of a CFG for a programming language. We will assume that the rules for
<boolean-expr>, <assignment-stmt>, and <loop-stmt> have been designed correctly. Just as in your
assignment, the semicolon ; is used for sequential composition of statements. The start symbol is <stmts>.

<stmts> --> <assignment-stmt> | <loop-stmt> | <if-stmt> | <stmts> ; <stmts>

<if-stmt> --> if <boolean-expr> then <stmts>

| if <boolean-expr> then <stmts> else <stmts>

There are two serious problems with this grammar: one is related to sequential composition and another
to the if-statements.

Part (a) [5 marks]

Show how to fix the problem with sequential composition by making it left-associative.

Part (b) [5 marks]

Demonstrate that the if-statement causes ambiguity by producing two different parse trees for a string
in the language. Since you don’t know what <boolean-expr>, <assignment-stmt> and <loop-stmt>

generate, you can leave them as leafs in your parse trees. Use the original grammar to generate the trees.

Question 1. (continued)

Question 2. [10 marks]

As we have seen in class, there is a number of ways in which we can specify function parameters in Racket:

• no brackets (Racket will bind parameter to list of arguments)
• (define my-func param some-expr)

• no parameters
• (define my-func () some-expr)

• one or more parameters
• (define my-func (param0 param1 ... paramN) some-expr)

• two or more parameters with a single “.” somewhere after the first and before the last parameter
• (define my-func (param0 . param1 ... paramN) some-expr)

• (define my-func (param0 param1 . param2 ... paramN) some-expr)

• etc.

where some-expr contains the body of the function

I started writing a CFG for these definitions. Luckily, someone already developed production rules for
<some-expr> that generates all function bodies and for <ident> that generates all identifiers in the language
(including function names, parameter names, etc.), so I can use the non-terminals <some-expr> and
<ident> in my rules. Help me finish the grammar, making sure it generates all required strings as is not
ambiguous.

Terminals: ___

plus everything generated by <some-expr>

Non-terminals: ___

Start symbol:

Production rules:

<definition> ::=

Question 2. (continued)

Question 3. [30 marks]

Complete the implementations of the following functions. Note that implementations that do not
follow the requirements in the comments will not earn any marks.

Part (a) [5 marks]

;; (zip-rec xs ys) -> list?

;; xs, ys: list?

;; Returns a list of pairs of corresponding elements in xs and ys.

;; Remaining elements in the longer list are ignored.

;; This is a recursive implementation.

(define (zip-rec xs ys)

(check-expect (zip-rec '(1 2 3) '()) '())

(check-expect (zip-rec '() '(1 2 3)) '())

(check-expect (zip-rec '(1 2 3) '(a b c d)) '((1 . a) (2 . b) (3 . c)))

Part (b) [3 marks]

;; Same as zip-rec above, but non-recursive, uses a single call to map, and no other

;; higher order procedures. In this implementation, assume xs and ys are of the same size.

(define (zip-map xs ys)

(map __

__

__))

Part (c) [5 marks]

; (unzip pairs) -> list?

; pairs: list of pairs

; Returns the result of unzipping pairs, namely, a list of two lists:

; the first sublist is a list of first elements of all pairs, in order,

; and the second sublist is a list of second elements.

; This is a recursive implementation.

(define (unzip pairs)

(check-expect (unzip '()) '(() ()))

(check-expect (unzip '((42 . 24))) '((42) (24)))

(check-expect (unzip '((1 . -1) (2 . -2) (3 . -3) (4 . -4)))

'((1 2 3 4) (-1 -2 -3 -4)))

Part (d) [4 marks]

; This implementation uses map and no recursion.

(define (unzip-hop pairs)

Part (e) [5 marks]

; This implementation uses foldr and no recursion.

(define (unzip-fold pairs)

(foldr

Part (f) [4 marks]

;; (test-apply ok? f g xs) -> list?

;; ok? : procedure?

;; f : procedure?

;; xs : list?

;; Return the list of results obtained as follows: for each element x in xs,

;; apply f if (ok? x) holds, and apply g otherwise.

;; This implementation is not recursive and uses a single call to map and no other

;; higher-order functions.

(define (test-apply ok? f g xs)

(map

(check-expect (test-apply positive? (lambda (x) (* 2 x)) (lambda (x) (- x 10)) '())

'())

(check-expect (test-apply positive? (lambda (x) (* 2 x)) (lambda (x) (- x 10))

'(-1 2 -3 4))

'(-11 4 -13 8))

Part (g) [4 marks]

;; This implementation is not recursive and uses a single call to foldr and no other

;; higher-order functions.

(define (test-apply-f ok? f g xs)

(foldr

