
Computer Science C24
University of Toronto Scarborough

Homework Exercise # 4

Handing in and marking

For all exercises/assignments in this course, you need to submit your solutions to the pencil-and-paper questions
on crowdmark and your solutions to the programming questions on MarkUs. Your pencil-and-paper solutions will
be marked with respect to correctness, clarity, brevity, and readability. Your code will be marked with respect to
correctness, efficiency, program design and coding style, clarity, and readability. This exercise counts for 9% of the
course grade.

Question 1. Haskell Data Types
In this question we are working on the module Trees. The starter file Trees.hs contains the following definition:

data Tree a = Leaf a | Node a (Tree a) (Tree a)

Begin by defining the following functions.

1. A function countNodes that returns the number of nodes in a given tree.

2. A curried function forallNodes that takes a predicate and a tree and returns true if and only if all the nodes
of a given tree satisfy the predicate.

3. A curried function existsNode that takes a predicate and a tree and returns true if and only if at least one
node of the given tree satisfies the predicate.

4. A function inorder that returns a list corresponding to the in-order traversal of the given tree.

Do you notice anything similar in the functions we have written? We can abstract the similar recursive structure
of each of these functions into a higher-order function that works in a fashion similar to fold. We define the function
tfold of type tfold:: (a -> b) -> (a -> b -> b -> b) -> Tree a -> b as follows:

tfold f g (Leaf x) = f x

tfold f g (Node x left right) = g x (tfold f g left) (tfold f g right)

The function tfold f g t takes the tree t, applies function f to all the leaves in t, and combines the resulting
values for t’s branches using the function g (notice that g also depends on the value stored in each branch).

Rewrite each of the above functions using a single call to tfold. The new versions of our functions should be
named countNodes’, forallNodes’, existsNode’, and inorder’.

Question 2. Haskell Type Classes
In this question we represent sets with the help of Haskell lists by defining the data type Set as follows:

data Set a = Set [a]

Some examples of sets are:

emptyset = Set []

singleton = Set [42]

s = Set [1,2,3]

s’ = Set [3,1,2]

t = Set [3,2,1,4]

a. Make Set an instance of class Show with the following effect:

1



> emptyset

{}

> singleton

{42}

> s

{1,2,3}

> s’

{3,1,2}

> t

{3,2,1,4}

Filename: SetShow.hs.

b. We would like to be able to test Sets for equality. Note that we cannot simply derive Eq, since set equality
differs from list equality by not taking the order of elements into consideration. Make Set an instance of Eq so that
== on Sets tests for set equality. For example,

> s == s’

True

> s == t

False

Notice that you get /= “for free” from the definition of Eq. Filename: SetEq.hs.

c. We would like to define an ordering on Sets by using set inclusion. Notice that we cannot make Set an instance
of Ord, since not every pair of sets is comparable. Define a class POrd that represents partial ordering. Instances of
POrd support the following operations:

• the function pcompare, which returns values of type POrdering defined as follows:
data POrdering = PLT | PEQ | PGT | PIN deriving (Eq, Show)

The intended meaning of these values is: PLT – less than, PEQ – equals, PGT – greater than, and PIN –
incomparable.

• the functions lt (less than), gt (greater than), lte (less than or equals to), gte (greater than or equals to),
and inc (incomparable).

The class declaration should provide:
• a default definition of the function pcompare from the ordering operators lt, gt, etc., and
• default definitions of all the ordering operators from pcompare.

Filename: POrd.hs.

d. Make Set an instance of POrd. Provide the definition of the function pcompare, so that pcompare s t returns
• PLT, if the set s is less than the set t (i.e., it is a proper subset of t),
• PEQ, if the set s is equal to the set t,
• PGT, if the set s is greater than the set t (i.e., it is a proper superset of t), and
• PIN, if the sets s and t are incomparable.

The definitions of the ordering operators gt, lt, etc. should be inherited from POrd. Some examples:

> s ‘lt‘ t

True

> singleton ‘gte‘ emptyset

True

> singleton ‘lt‘ t

False

> singleton ‘inc‘ t

True

> s ‘lt‘ s’

False

> s ‘lte‘ s’

True

> pcompare s s’

PEQ
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> pcompare s singleton

PIN

Filename: SetPOrd.hs.

Question 3. Exploring Programming Languages
In this question we implement a Java version of partially ordered sets, analogous to our earlier solution in Haskell.

Study the given UML diagram and the provided starter code carefully. You may need to read up on the newer features
of Java, such as default interface methods, as well as on advanced Java generics.

To make sure we learn as much as we can about modern Java in the process, we will not use constructs such as
loops or recursion in this exercise. We will use Java streams instead.

Make sure all your classes/interfaces are public, all methods/fields have access modifiers exactly as in the diagram,
all classes/interfaces and methods are named exactly as specified, and are in the package set.

Finally, make sure your code passes the checkstyle tool, linked from the course website. As always, make sure
you are using the correct versions of all tools.

As always, make sure to fully test your code. The starter code provides example usage of the code you will
develop, but not proper testing of the code — it is your responsibility to thoroughly test all code you submit.
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