How?

[trace]

Call:
Call:
Call:
Call:
Exit:
- Call:
- Exit:
Exit:
- Call:
Exit:
Exit:
- Call:
~ Exit:
Exit:

true

Lists in Prolog

7- mylength([a,b,c],3).

(8) mylength([a, b, cl, 3) 7
(9) mylength([b, c], _L193) 7
(10) mylength([c], _L212) 7
(11) mylength([], _L231) 7
(11) mylength([], 0) 7

(11) _L212 is 0+1 7

(11) 1 is 0+1 7

(10) mylength([c]l, 1) ?

(10) _L193 is 1+1 7

(10) 2 is 1+1 7

(9) mylength([b, c], 2) ?
(9) 3 is 2+1 7

(9) 3 is 2+1 7

(8) mylength([a, b, c], 3) 7

58

Lists in Prolog

% mylength(?L,?N) iff N is the length of list L
mylength([],0).
mylength([_|T],N) :-mylength(T,NT), N is NT+1.

7- mylength([a,b,c], L).
L = 3.

?- mylength([X,Y], L).
L =2.

7- mylength(X, 3).
X = [_G226, _G229, _G232] ; <-- infinite run

50

Lists in Prolog

[trace] 7- mylength(X, 1).

X = [_G373] ;
Redo: (9) mylength(_G374, _L196) 7
Call: (10) mylength(_G377, _L215) 7
Exit: (10) mylength([], 0) 7

~ Call: (10) _L196 is 0+1 7

" Exit: (10) 1 is 0+1 7
Exit: (9) mylength([_G376], 1) 7

T Call: (9) 1 is 1+1 7

~ Fail: (9) 1 is 1+1 7

Lists in Prolog

Redo: (10) mylength(_G377, _L215) 7

Call:
Exit:
- Call:
~ Exit:
Exit:
- Call:
- Exit:
Exit:
- Call:
- Fail:
Redo:

(11) mylength(_G380, _L227) 7
(11) mylength([l, 0) 7

(11) _L215 is 0+1 ?

(11) 1 is 0+1 7

(10) mylength([_G379], 1) 7
(10) _L196 is 1+1 7

(10) 2 is 1+1 7

(9) mylength([_G376, _G379], 2) 7
(9) 1 is 2+1 7

(9) 1 is 2+1 7

(11) mylength(_G380, _L227) 7

We'll learn how to fix this later.

Logic Programming vs. Prolog

What happens if we change the order of rules:

% mylength(?L,?N) iff N is the length of list L
mylength([_|T],N) :-mylength(T,NT), N is NT+1.
mylength([],0).

7- mylength([a,b,c], 3).
true.

?7- mylength([a,b,c], N).
N = 3.

7- mylength(X, 2).
ERROR: Out of local stack

Not very “declarative”.

62

Negation as Failure

No equivalent of logical negation in Prolog:
® Prolog can only assert that something is true.
® Prolog cannot assert that something is false.

® Prolog can assert that the given facts and rules do not allow
something to be proven true.

63

Negation as Failure

Assuming that something unprovable is false is called negation as
failure.

(Based on a closed world assumption.)

The goal \+(G) (or not G) succeeds whenever the goal G fails.

?- member(b, [a,b,c]).

true

?- \+ member (b, [a,b,c]).
false.

?- not(member (b, [a,b,c])).
false.

?- not (member (b, [a,c])).
true.

A

Negation as Failure
Example: Disjoint Sets

overlap(S1,S2) :- member(X,S1),member(X,S2).

disjoint(S1,S82) :- \+(overlap(S1,S82)).

?7- overlap([a,b,c], [c,d,el).

true

?- overlap([a,b,c],[d,e,f]).

false

?7- disjoint([a,b,c], [c,d,e]).

false

?7- disjoint([a,b,c],[d,e,f]).

true

7- disjoint([a,b,c],X).

false Y<————————- Not what we wanted

65

Negation as Failure

overlap(S1,52) :- member(X,S1),member(X,S2).
disjoint(S1,S52) :- \+(overlap(S1,S52)).

[tracel

Call:
Call:
Call:
Exit:
Call:
Exit:
Exit:
Fail:

false

7- disjoint([a,b,c],X).

(7
(8)
€))
(9
(9
(9
(8)
(7

disjoint([a, b, c], _G293) 7 creep
overlap([a, b, c], _G293) 7 creep
lists:member(_L230, [a, b, c]) 7 creep
lists:member(a, [a, b, c]) 7 creep
lists:member(a, _G293) 7 creep
lists:member(a, [al_G352]) ? creep
overlap([a, b, c], [al_G352]) 7 creep
disjoint([a, b, c], _G293) 7 creep

66

Negation as Failure

Proper use of Negation as Failure
not (G) works properly only in the following cases:

1. When G is fully instantiated at the time prolog processes the
goal not (G).

(In this case, not (G) is interpreted to mean “goal G does not
succeed”.)

2. When all variables in G are unique to G, i.e., they don't appear
elsewhere in the same clause.

(In this case, not (G(X)) is interpreted to mean “There is no
value of X that will make G(X) succeed”.)

67

Negation as Failure

woman (jane) .

woman (marilyn) .

famous (marilyn).

loves(john,X) :- woman(X), famous(X).
hates(john,X) :- \+ loves(john,X).

There are infinitely many women that John hates, not just Jane:

7- hates(john, jane) .
true
?7- hates(john,susan).
true
?7- hates(john,betty).
true

68

Negation as Failure

woman (jane) .

woman (marilyn) .

famous (marilyn).

loves(john,X) :- woman(X), famous(X).
hates(john,X) :- \+ loves(john,X).

Plus John hates many things:

7- hates(john,pizza).
?7- hates(john, john).

We say that the rule hates is not safe. Solution:
hates(john,X) :- woman(X), \+ loves(john,X).

woman (X) is called a guard — it protects from making unwanted
inferences.

60

Execution of Prolog Programs

e Unification: variable bindings.

¢ Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

e Backtracking:
Systematically searches for all possible solutions that can be
obtained via unification and backchaining.

70

Cut

The goal “!", pronounced “cut” always succeeds immediately.
It has an important side effect: Once it is satisfied, it disallows
either:

® backtracking back over the cut, or

® backtracking and applying a different clause of the same
predicate to satisfy the present goal.

You can think of satisfying cut as making a commitment both

® to the variable bindings we've made during the application of
this rule, and

® to this particular rule itself.

The cut goal trims the derivation tree of all other choices on the
way back up to and including the point in the derivation tree
where the cut was introduced into the sequence of goals.

71

Cut

Cut can be used to improve the efficiency of search by reducing the
search space.
For example, when two predicates are mutually exclusive:

qX) :- even(X), a(X).
q(X) := 0dd(X), b(X).

With cut

q(X) :- even(X), !, a(X).
q(X) :- 0dd(X), b(X).

79

Cut

Cut can remove unwanted answers. Consider the Family Database:

1. male(charlie). 2. male(bob).
3. male(albert). 4. female(eve).
5. parent(charlie,bob).

6. parent(eve,bob).

7. parent(charlie,albert).

8. parent(eve,albert).

% son(?X) iff X is a son
11. son(X):-parent(_,X) ,male(X).

7- son(X).
X = bob ;
X = bob ;
X = albert ;
X = albert.

73

Cut

fail

al

son(X)
llj

p(-X),m(X)

=bo
/X

5/X

a\ x

bo%x

m(_bob)

fail

m(al)

m(al)

\
fail | |success| |fail

3/
succes

fail

\

2/
ail | | success

m(bob)

Y\
success | | f:

74

Cut

We want to rewrite the rule son so that it does not generate
duplicate answers.

son(X) : -parent (_,X) ,male(X),!

?- son(X).
X = bob.

What about albert?

75

Cut

m(bob),!

N

|

]

Y

success

76

Cut
Try again:

son(X) :-parent(_,X),!, male(X).

?- son(X).
X = bob.

Aghrr..

77

son(X)

p(-X),,,m(X)

/5/x—bob

success | | fail

Cut

78

Cut
Think:

® Any male is a potentially good answer, so we want to try all
of them: can't put “cut” after “male” in the same rule.

® If a male has 2 parents, we only want to list him once as the
answer: want to put “cut” after “parent”.

Result:

son(X) :-male(X), child(X).
child(X) :-parent(_,X),!.

?- son(X).
X = bob ;
X = albert.

70

Cut

son(X)
111
m(X),child(X)
1/X/:Ch/ 2 Xbob S/ =2
child(ch) child(bob) child(al)
12 12 12
oCemt| | [oCbob)t|| | [pCal).
5 7{%
L |

20

Cut

What about sibling?

sibling(X,Y) :-parent (P,X) ,parent (P,Y).

7- sibling(bob, X).

X = bob ;
X = albert ;
X = bob ;
X = albert ;

false.

21

Cut
Think:

® Any two people in the database are potentially good answers,
so we want to try all of them: can’t put “cut” in a rule after X
and/or Y is instantiated.

® |f 2 people share 2 parents, we only want to list them once as
the answer: want to put “cut” after 2 “parent” rules.
Result:

sibling(X,Y) :-person(X) ,person(Y),commonparent (X,Y).
person(X) :-male(X).

person(X) :-female(X) .
commonparent (X,Y) : -parent (P,X) ,parent (P,Y),!.

29

Cut

sibling(X,Y) :-person(X) ,person(Y),commonparent (X,Y) .

person(X) :-male(X).
person(X) :-female (X) .
commonparent (X,Y) : -parent (P,X) ,parent (P,Y),!.

7- sibling(bob, X).
X = bob ;

X = albert ;

false.

a3

Cut

Finally, we don't want X to be a sibling of X.

sibling(X,Y) :-\+(X=Y) ,person(X) ,person(Y),
commonparent (X,Y) .

person(X) :-male(X).

person(X) :-female (X) .

commonparent (X,Y) : -parent (P,X) ,parent (P,Y),!.

?7- sibling(bob,X).
false

What went wrong?

24

Cut

Solution:

sibling(X,Y) :-person(X) ,person(Y),\+(X=Y),
commonparent (X,Y) .

person(X) :-male(X).

person(X) :-female (X) .

commonparent (X,Y) : -parent (P,X) ,parent (P,Y),!.

?7- sibling(bob,X).
X = albert ;
false.

8K

Execution of Prolog Programs

e Unification: variable bindings.

¢ Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

e Backtracking:
Systematically searches for all possible solutions that can be
obtained via unification and backchaining.

86A

Reasoning

® Bottom-up (or forward) reasoning: starting from the given
facts, apply rules to infer everything that is true.

e.g., Suppose the fact B and the rule A < B are given.
Then infer that A is true.

® Top-down (or backward) reasoning: starting from the query,
apply the rules in reverse, attempting only those lines of
inference that are relevant to the query.

e.g., Suppose the query is A, and the rule A < B is given.
Then to prove A, try to prove B.

7

Reasoning

Backtracking plus reduction gives Prolog the built-in ability to
perform top-down search. This naturally models program
execution in imperative languages (main program calls
subprograms, which call sub-subprograms, etc.).

Some languages (e.g. Coral programming language) do
bottom-up search. Bottom-up search is also often used in natural
language processing.

a9

Reasoning

Bottom-up search has:
® very early access to the axioms of inference, which

® often results in greater speed (because variables are bound
early, which creates opportunities for failure). But

® it is not goal-oriented — many useless facts may be derived
along the way.

Top-down search is:
® very goal-oriented, but
® it often has problems with termination and efficiency, as
® it may explore many lines of reasoning that fail

The two methods are logically equivalent. There are many hybrid
search strategies, too. The best combination depends on the
empirical domain being modelled.

20

Examples:
a:-b;c.
b:-d;e.
c:-f;g.
g.

7-a.
But:
c:-bN.
bl:-al.
bN:-aN.
al.

aN.

7-c.

Reasoning

a0

Nondeterministic Programming

Nondeterminism is powerful for defining and implementing
algorithms.

Intuitively, a nondeterministic machine can choose its next
operation correctly when faced with several alternatives.

Nondeterminism can be simulated/approximated by Prolog's
sequential search and backtracking. Nondeterminism cannot truly
be achieved.

091

Towers of Hanoi

Setup: 3 pegs ("left”, "centre”, "right”). In the initial state one
peg (let's say the "left” peg) has N rings on it, stacked from
largest to smallest.

Task: Move N disks from the left peg to the right peg using the
centre peg as an auxiliary holding peg. At no time can a larger disk
be placed upon a smaller disk.

(o))

Towers of Hanoi

% move(+N,?X,?Y,?Z) iff it is possible to move N disks
% from peg X to peg Y using peg Z as an auxiliary
% holding peg.
% As a side effect, print out the sequence of moves.
move(1,X,Y,_) :-

write('Move top disk from '),

write(X),

write(' to '),

write(Y),

nl.
move(N,X,Y,Z) :-

N>1,

M is N-1,

move (M,X,Z,Y),

move(1,X,Y,),

move(M,Z,Y,X).

03

Nondeterministic Programming

Can you think of other problems / games where you can specify
the rules of the game in Prolog and Prolog will solve it for you?

04

