
CSCC24 – Principles of Programming Languages

Anya Tafliovich1

1with thanks to S.McIlraigh, G.Penn, P.Ragde
1

Logic Programming and Prolog

Logic programming languages are neither procedural nor
functional.
• Specify relations between objects

• larger(3,2)
• father(tom,jane)

• Separate logic from control:
• Programmer declares what facts and relations are true.
• System determines how to use facts to solve problems.
• System instantiates variables in order to make relations true.

2

Prolog

Suppose we state these facts:

male(charlie). parent(charlie,bob).

female(alice). parent(eve,bob).

male(bob). parent(charlie,alice).

female(eve). parent(eve,alice).

We can then make queries:
?- male(charlie).

true

?- male(eve).

false

?- female(Person).

Person = alice;

Person = eve;

false

?- parent(Person, bob).

Person = charlie;

Person = eve;

false

?- parent(Person, bob),

female(Person).

Person = eve;

false

3

Prolog

We can also state rules, such as this one:

sibling(X, Y) :- parent(P, X),

parent(P, Y).

Then the queries become more interesting:

?- sibling(charlie, eve).

false

?- sibling(bob, Sib).

Sib = bob;

Sib = alice;

Sib = bob;

Sib = alice;

false

4

Logic vs Functional Programming

In FP, we program with functions.

• f (x , y , z) = x ∗ y + z − 2

• Given a function, we can only ask one kind of question:
Here are the argument values; tell me what the function’s
value is.

In LP, we program with relations.

• r(x , y , z) = {(1, 2, 3), (9, 5, 13), (0, 0, 4)}
• Given a predicate, we can ask many kinds of question:

Here are some of the argument values; tell me what the
others have to be in order to make a true statement.

5

Logic Programming

• A program consists of facts and rules.

• Running a program means asking queries.

• The language tries to find one or more ways to prove that the
query is true.

• This may have the side effect of freezing variable values.

• The language determines how to do all of this, not the
program.

• How does the language do it? Using unification, resolution,
and backtracking.

6

Some Prolog Syntax

Layer 0: constants and variables:
• Constants are:

• Atoms: any string consisting of alphanumeric characters and
underscore () that begins with a lowercase letter.

• Numbers.

• Variables are strings that begin with ’ ’ or an uppercase letter.

7

Some Prolog Syntax

<const> ::= <atom> | <number>

<var> ::= <ucase> <string> | _<string>

<atom> ::= <lcase> <string>

<letter> ::= <ucase> | <lcase>

<string> ::= epsilon | <letter><string> |

<number><string> | _<string>

<ucase> ::= A | ... | Z

<lcase> ::= a | ... | z

<number> ::= ...

8

Some Prolog Syntax

Layer 1: terms.
These are inductively defined:

• Constants and variables are terms.

• Compound terms – applications of any n-ary functor to any n
terms – are terms.

• Nothing else is a term.

Note: Prolog distinguishes numbers and variables from other terms
in certain contexts, but is otherwise untyped/monotyped.

9

Some Prolog Syntax

Layer 2: atomic formulae.
These consist of an n-ary relation (also called predicate) applied
to n terms

Note: formulae look a lot like terms because of Prolog’s weak
typing. But formulae are either true or false; terms denote entities
in the world.

In Prolog, atomic formulae can be used in three ways:

• As facts: in which they assert truth,

• As queries: in which they enquire about truth,

• As components of more complicated statements (see below).

10

Some Prolog Syntax

<term> ::= <const> | <var> |

<functor>'(' <term> { , <term> } ')'

<pred> ::= <pname>'(' <term> { , <term> } ')'

11

Prolog Queries

A query is a proposed fact that is to be proven.

• If the query has no variables, returns true/false.

• If the query has variables, returns appropriate values of
variables (called a substitution).

?- male(charlie).

true

?- male(eve).

false

?- female(Person).

Person = alice;

Person = eve;

false

12

Some Prolog Syntax

Layer 3: complex formulae.
These are formed by combining simpler formulae. We only discuss
a couple:

• conjunction:
in Prolog, and looks like ’,’

Can be used as queries, but not as facts. Using multiple facts is an
implicit conjunction.

?- parent(Person, bob), female(Person).

Person = eve;

false

13

Some Prolog Syntax

• implication: in Prolog, these are very special.
They are written backwards (conclusion first), and the
conclusion must be an atomic formula. This backwards
implication is written as ’:-’, and is called a rule.

Rules can be used in programs to assert implications, but not in
queries.

sibling(X, Y) :- parent(P, X), parent(P, Y).

14

Horn Clauses (Rules)

A Horn Clause is: c ← h1 ∧ h2 ∧ h3 ∧ . . . ∧ hn
• Antecedents: conjunction of zero or more atomic formulae.

• Consequent: an atomic formula.

Meaning of a Horn clause:

• “The consequent is true if the antecedents are all true”

• c is true if h1, h2, h3, . . . , and hn are all true

15

Horn Clause

• Horn Clause = Clause

• Consequent = Goal = Head

• Antecedents = Subgoals = Tail

• Horn Clause with No Tail = Fact

• Horn Clause with Tail = Rule

In Prolog, a Horn clause
c ← h1 ∧ . . . ∧ hn

is written
c :- h1, . . . , hn.

Syntax elements: ’:-’ ’,’ ’.’

16

Prolog Horn Clause

A Horn clause with no tail:

male(charlie).

I.e., a fact: charlie is a male dependent on no other conditions.
A Horn clause with a tail:

father(charlie,bob):-

male(charlie), parent(charlie,bob).

I.e., a rule: charlie is the father of bob if charlie is male and
charlie is a parent of bob’s.

17

Some Prolog Syntax

A logic program is a collection of Horn clauses.
Finally, a simplified Prolog grammar:

<clause> ::= <pred> . |

<pred> :- <pred> { , <pred> } .

<pred> ::= <pname>'(' <term> { , <term> } ')'

<term> ::= <functor>'(' <term> { , <term> } ')'

| <const> | <var>

<const> ::= ...

<var> ::= ...

18

Meaning of Prolog Rules

A prolog rule must have the form:

c :- a1, a2, a3, ..., an.

which means in logic:

a1 ∧ a2 ∧ a3 ∧ · · · ∧ an → c

Restrictions

• There can be zero or more antecedents, and they are
conjoined.

• There cannot be more than one consequent.

19

non-Horn clauses

Many non-Horn formulae can be converted into logically equivalent
Horn-formulae, using propositional tautologies, e.g.:

¬¬a⇔ a double negation

¬(a ∨ b)⇔ ¬a ∧ ¬b DeMorgan

a ∨ (b ∧ c)⇔ (a ∨ b) ∧ (a ∨ c) distributivity

a→ b ⇔ ¬a ∨ b implication

20

Bending the Restrictions?

Getting disjoined antecedents
Example: a1 ∨ a2 ∨ a3 → c .
Solution?

Syntactic sugar: ;

Getting more than 1 consequent, conjoined
Example: a1 ∧ a2 ∧ a3 → c1 ∧ c2.
Solution?

Getting more than 1 consequent, disjoined
Example: a1 ∧ a2 ∧ a3 → c1 ∨ c2.
Solution?

21

We cannot disjoin consequents

Inference with non-Horn formulae is much more difficult, e.g.:

a :- b.

a :- c.

b ; c.

?- a.

22

Variables

Variables may appear in the antecedents and consequent of a Horn
clause. Prolog interprets free variables of a rule universally.
c(X1,...,Xn) :- f(X1,...,Xn,Y1,...,Yk)

is, in first-order logic:

∀X1, . . . ,Xn,Y1, . . . ,Ym · c(X1, . . . ,Xn)←
f (X1, . . . ,Xn,Y1, . . . ,Ym)

or, equivalently

∀X1, . . . ,Xn · c(X1, . . . ,Xn)

← ∃Y1, . . . ,Ym · f (X1, . . . ,Xn,Y1, . . . ,Ym)

Because of this equivalence, we sometimes say that free variables
that do not appear in the head are quantified existentially.
Note that the Prolog query ?-q(X1, ..., Xn) means

∃X1, . . . ,Xn · q(X1, . . . ,Xn)

23

Horn Clauses with Variables

isaMother(X) :- female(X), parent(X, Y).

In first-order logic:

∀X · isaMother(X)← ∃Y · parent(X ,Y) ∧ female(X).

24

Execution of Prolog Programs

• Unification: variable bindings.

• Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

• Backtracking:
Systematically searches for all possible solutions that can be
obtained via unification and backchaining.

25

Unification

Two atomic formulae unify if and only if they can be made
syntactically identical by replacing their variables by other terms.
For example,

• parent(bob,Y) unifies with parent(bob,sue) by replacing
Y by sue.

?- parent(bob,Y)=parent(bob,sue).

Y = sue ;

false

• parent(bob,Y) unifies with parent(X,sue) by replacing Y

by sue and X by bob.

?- parent(bob,Y)=parent(X,sue).

Y = sue

X = bob ;

false

26

Unification

• A substitution is a function that maps variables to Prolog
terms.
e.g., { X/sue, Y/bob }

• An instantiation is an application of a substitution to all of
the free variables in a formula or term.

If S is a substitution and T is a formula or term, then ST

denotes the instantiation of T by S.

T = parent(X,Y)

S = { X/sue, Y/bob }

ST = parent(sue,bob)

T = likes(X,X)

S = { X/bob }

ST = likes(bob,bob)

27

Unification

• C is a common instance of formulae/terms A and B, if there
exist substitutions S1 and S2 such that C = S1(A) = S2(B).

A = parent(bob,X), B = parent(Y,sue)}

S1 = { X/sue }, S2 = { Y/bob }

S1(A) = S2(B) = parent(bob,sue) = C

• A and B are unifiable if they have a common instance C. A
substitution that produces a common instance is called a
unifier of A and B.

parent(bob,X) and parent(Y,sue) are unifiable:

{ X/sue, Y/bob } is the unifier

28

Unification

Examples:
p(a,a) unifies with p(a,a).

p(a,b) does not unify with p(a,a).

p(X,X) unifies with p(b,b) and with p(c,c), but not with
p(b,c).

p(X,b) unifies with p(Y,Y) with unifier X/b, Y/b to become
p(b,b).

p(X,Z,Z) unifies with p(Y,Y,b) with unifier X/b, Y/b, Z/b to
become p(b,b,b).

p(X,b,X) does not unify with p(Y,Y,c).

29

Unification

Examples:

• p(f(X),X) unifies with p(Y,b)

with unifier {X\b, Y\f(b)}
to become p(f(b),b).

• p(b,f(X,Y),c) unifies with p(U,f(U,V),V)

with unifier {X\b, Y\c, U\b, V\c}
to become p(b,f(b,c),c).

30

Unification

p(b,f(X,X),c) does not unify with p(U,f(U,V),V).
Reason:

• To make the first arguments equal,
we must replace U by b.

• To make the third arguments equal,
we must replace V by c.

• These substitutions convert
p(U,f(U,V),V) into p(b,f(b,c),c).

• However, no substitution for X will convert
p(b,f(X,X),c) into p(b,f(b,c),c).

31

Unification

p(f(X),X) should not unify with p(Y,Y).
Reason:

• Any unification would require that
f(X) = Y and Y = X

• But no substitution can make
f(X) = X

However, Prolog claims they unify:

?- p(f(X),X)=p(Y,Y).

X = f(**)

Y = f(**) ;

false

32

Unification

If a rule has a variable that appears only once, that variable is
called a “singleton variable”.

Its value doesn’t matter — it doesn’t have to match anything
elsewhere in the rule.

isaMother(X) :- female(X), parent(X, Y).

Such a variable consumes resources at run time.

We can replace it with , the anonymous variable. It matches
anything. If we don’t, Prolog will warn us.

Note that p(,) unifies with p(b,c). Every instance of the
anonymous variable refers to a different, unique variable.

33

Most General Unifier (MGU)

The atomic formulas p(X,f(Y)) and p(g(U),V) have infinitely
many unifiers.

• {X\g(a), Y\b, U\a, V\f(b)}
unifies them to give p(g(a),f(b)).

• {X\g(c), Y\d, U\c, V\f(d)}
unifies them to give p(g(c),f(d)).

However, these unifiers are more specific than necessary.

The most general unifier (mgu) is

{X\g(U), V\f(Y)}

It unifies the two atomic formulas to give p(g(U),f(Y)).

Every other unifier results in an atomic formula of this form.

The mgu uses variables to fill in as few details as possible.

34

Most General Unifier

Example:

f (W , g(Z), Z)

f (X , Y , h(X))

To unify these two formulae, we need

Y = g(Z)
Z = h(X)
X = W

Working backwards from W , we get

Y = g(Z) = g(h(W)
Z = h(X) = h(W)
X = W

So, the mgu is
{X\W , Y \g(h(W)), Z\h(W)}

35

Most General Unifier

The substitution that results in the most general instance is called
the most general unifier (mgu).

It is unique, up to consistent renaming of variables.

This is the one that Prolog computes.

A substitution, σ, is a most general unifier of a set of expressions
E if it unifies E , and for any unifier, ω, of E , there is a unifier, λ,
such that ω = σ ◦ λ.

36

Most General Unifier

A substitution, σ, is a most general unifier of a set of expressions
E if it unifies E , and for any unifier, ω, of E , there is a unifier, λ,
such that ω = σ ◦ λ.

e.g., given p(X,f(Y)) and p(g(U),V),
an MGU σ = { X/g(U), V/f(Y) },
and a unifier ω={X/g(a), Y/b, U/a, V/f(b)},

we have ω(p(X,f(Y))) = p(g(a),f(b)),
σ(p(X,f(Y))) = p(g(U),f(Y)),

so exists λ= { U/a, Y/b } ,
so that ω(p(X,f(Y))) = λ(σ(p(X,f(Y))))

also ω(p(g(U),V)) = p(g(a),f(b)),
σ(p(g(U),V)) = p(g(U),f(Y)),

so for λ= { U/a, Y/b } ,
we have ω(p(g(U),V)) = λ(σ(p(g(U),V)))

37

Most General Unifier

Examples:
t1 t2 MGU

f(X,a) f(a,Y)

f(h(X,a),b) f(h(g(a,b),Y),b)

g(a,W,h(X)) g(Y,f(Y,Z),Z)

f(X,g(X),Z) f(Z,Y,h(Y))

f(X,h(b,X)) f(g(P,a),h(b,g(Q,Q)))

38

Execution of Prolog Programs

• Unification: variable bindings.

• Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

• Backtracking:
Systematically searches for all possible solutions that can be
obtained via unification and backchaining.

39

Prolog Search Trees

Encapsulate unification, backward chaining, and backtracking.

• Internal nodes are ordered list of subgoals.

• Leaves are success nodes or failures, where computation can
proceed no further.

• Edges are labeled with variable bindings that occur by
unification.

Describe all possible computation paths.

• There can be many success nodes.

• There can be infinite branches.

40

Prolog Search Trees

1) male(charlie). 5) parent(charlie,bob).

2) male(bob). 6) parent(eve,bob).

3) female(alice). 7) parent(charlie,alice).

4) female(eve). 8) parent(eve,alice).

9) sibling(X, Y) :- parent(P, X), parent(P, Y).

?- sibling(alice, Who).

Who = bob ;

Who = alice ;

Who = bob ;

Who = alice.

41

Prolog Search Trees

• Trace it by hand

• Trace it with gtrace (or trace).

sibling(alice,Who)

parent(P,alice), parent(P,Who)

parent(eve,Who)

successsuccess
6

Who=bob
8

Who=alice

parent(charlie,Who)

successsuccess
5

Who=bob
8

Who=alice

7
P=charlie

8
P=eve

9 X=alice,Y=Who

42

Logic Programming vs. Prolog

Logic Programming: nondeterministic:

• Arbitrarily choose rule to expand first.
• Arbitrarily choose subgoal to to explore first.
• Results don’t depend on rule and subgoal
ordering.

Prolog: deterministic:

• Expand first rule first.
• Explore first subgoal first.
• Results may depend on rule and subgoal
ordering.

43

Syntax of Lists in Prolog

A Prolog list is:

• [] the empty list, or

• [Head|Tail] a list with first element Head and rest of the
elements list Tail

Luckily, we abbreviate

[e1 | [e2 | [. . . en]]]

as
[e1, e2, . . . en]

44

Lists in Prolog

List Unification: two lists unify iff they have the same structure
and the corresponding elements unify.

?- [X, Y, Z] = [john, likes, fish].

?- [cat] = [X|Y].

?- [1,2] = [X|Y].

45

Lists in Prolog

?- [a,b,c] = [X|Y].

?- [a,b|Z]=[X|Y].

?- [X,abc,Y]=[X,abc|Y].

?- [[the|Y]|Z] = [[X,hare] | [is,here]].

46

Lists in Prolog

% member(?X,?List) iff X is an element of List

member(X,[X|_]).

member(X,[_|Rest]):-member(X,Rest).

?- member(a, [a,b,c]).

true

?- member(b, [a,c]).

false.

?- member(X, [a,b,c]).

X = a ;

X = b ;

X = c ;

false.

?- member(a, X).

X = [a|_] ;

X = [_, a|_] ;

X = [_, _, a|_]

47

Lists in Prolog

[trace] ?- member(c,[a,b,c,d]).

Call: (7) member(c, [a, b, c, d]) ?

Call: (8) member(c, [b, c, d]) ?

Call: (9) member(c, [c, d]) ?

Exit: (9) member(c, [c, d]) ?

Exit: (8) member(c, [b, c, d]) ?

Exit: (7) member(c, [a, b, c, d]) ?

true

48

Lists in Prolog

[trace] ?- member(X,[a,b,c,d]).

Call: (7) member(_G314, [a, b, c, d]) ?

Exit: (7) member(a, [a, b, c, d]) ?

X = a ;

Redo: (7) member(_G314, [a, b, c, d]) ?

Call: (8) member(_G314, [b, c, d]) ?

Exit: (8) member(b, [b, c, d]) ?

Exit: (7) member(b, [a, b, c, d]) ?

X = b ;

Redo: (8) member(_G314, [b, c, d]) ?

Call: (9) member(_G314, [c, d]) ?

Exit: (9) member(c, [c, d]) ?

Exit: (8) member(c, [b, c, d]) ?

Exit: (7) member(c, [a, b, c, d]) ?

49

Lists in Prolog

X = c ;

Redo: (9) member(_G314, [c, d]) ?

Call: (10) member(_G314, [d]) ?

Exit: (10) member(d, [d]) ?

Exit: (9) member(d, [c, d]) ?

Exit: (8) member(d, [b, c, d]) ?

Exit: (7) member(d, [a, b, c, d]) ?

X = d ;

Redo: (10) member(_G314, [d]) ?

Call: (11) member(_G314, []) ?

Fail: (11) member(_G314, []) ?

false

50

Lists in Prolog

% append(?X,?Y,?Z) iff Z is the result of

% appending list Y to list X

append([],Y,Y).

append([H|T],Y,[H|Z]):-append(T,Y,Z).

?- append([a],[b,c],Y).

Y = [a, b, c].

?- append(X,[b,c],[a,b,c]).

X = [a] ;

false

?- append(X,Y,[a,b,c]).

X = [], Y = [a, b, c] ;

X = [a], Y = [b, c] ;

X = [a, b], Y = [c] ;

X = [a, b, c], Y = [] ;

false
51

Lists in Prolog

[trace] ?- append([a,b,c],[d,e],Z).

Call: (7) append([a, b, c], [d, e], _G319) ?

Call: (8) append([b, c], [d, e], _G385) ?

Call: (9) append([c], [d, e], _G388) ?

Call: (10) append([], [d, e], _G391) ?

Exit: (10) append([], [d, e], [d, e]) ?

Exit: (9) append([c], [d, e], [c, d, e]) ?

Exit: (8) append([b, c], [d, e], [b, c, d, e]) ?

Exit: (7) append([a, b, c], [d, e], [a, b, c, d, e]) ?

Z = [a, b, c, d, e].

52

Lists in Prolog

% mylength(?L,?N) iff N is the length of list L

mylength([],0).

mylength([_|T],N):-mylength(T,N-1).

?- mylength([a,b,c],3).

false.

Huh?

[trace] ?- mylength([a,b,c],3).

Call: (7) mylength([a, b, c], 3) ?

Call: (8) mylength([b, c], 3-1) ?

Call: (9) mylength([c], 3-1-1) ?

Call: (10) mylength([], 3-1-1-1) ?

Fail: (10) mylength([], 3-1-1-1) ?

Fail: (9) mylength([c], 3-1-1) ?

Fail: (8) mylength([b, c], 3-1) ?

Fail: (7) mylength([a, b, c], 3) ?

false.
53

Arithmetic in Prolog

What is the result of these queries:

?- X = 97-65, Y = 32-0, X = Y.

?- X = 97-65, Y = 67, Z = 95-Y, X = Z.

To evaluate arithmetic expressions is Prolog, use:

• expr1 is expr2, where expr2 is fully instantiated; if expr1 is
a variable, it is bound to the result of evaluating expr2

• expr1 < expr2 or expr1 > expr2, where both expr1 and expr2
are instantiated

54

Arithmetic in Prolog

?- 5 is 2+3.

true.

?- X is 2+3.

X = 5.

?- 5 < 6.

true.

?- 2+3 < 3+3.

true.

55

Arithmetic in Prolog

% mylength(?L,?N) iff N is the length of list L

mylength([],0).

mylength([_|T],N):-N is NT+1, mylength(T,NT).

?- mylength([a,b,c],3).

ERROR: is/2:

Arguments are not sufficiently instantiated

^ Exception: (8) 3 is _G226+1 ?

Why?

[trace] ?- mylength([a,b,c],3).

Call: (7) mylength([a, b, c], 3) ?

^ Call: (8) 3 is _G358+1 ?

ERROR: is/2: Arguments are not sufficiently instantiated

^ Exception: (8) 3 is _G358+1 ?

Exception: (7) mylength([a, b, c], 3) ?

56

Arithmetic in Prolog

% mylength(?L,?N) iff N is the length of list L

mylength([],0).

mylength([_|T],N):-mylength(T,NT), N is NT+1.

?- mylength([a,b,c],3).

true

57

Lists in Prolog

How?

[trace] ?- mylength([a,b,c],3).

Call: (8) mylength([a, b, c], 3) ?

Call: (9) mylength([b, c], _L193) ?

Call: (10) mylength([c], _L212) ?

Call: (11) mylength([], _L231) ?

Exit: (11) mylength([], 0) ?

^ Call: (11) _L212 is 0+1 ?

^ Exit: (11) 1 is 0+1 ?

Exit: (10) mylength([c], 1) ?

^ Call: (10) _L193 is 1+1 ?

^ Exit: (10) 2 is 1+1 ?

Exit: (9) mylength([b, c], 2) ?

^ Call: (9) 3 is 2+1 ?

^ Exit: (9) 3 is 2+1 ?

Exit: (8) mylength([a, b, c], 3) ?

true

58

Lists in Prolog

% mylength(?L,?N) iff N is the length of list L

mylength([],0).

mylength([_|T],N):-mylength(T,NT), N is NT+1.

?- mylength([a,b,c], L).

L = 3.

?- mylength([X,Y], L).

L = 2.

?- mylength(X, 3).

X = [_G226, _G229, _G232] ; <-- infinite run

59

Lists in Prolog

[trace] ?- mylength(X, 1).

...

X = [_G373] ;

Redo: (9) mylength(_G374, _L196) ?

Call: (10) mylength(_G377, _L215) ?

Exit: (10) mylength([], 0) ?

^ Call: (10) _L196 is 0+1 ?

^ Exit: (10) 1 is 0+1 ?

Exit: (9) mylength([_G376], 1) ?

^ Call: (9) 1 is 1+1 ?

^ Fail: (9) 1 is 1+1 ?

60

Lists in Prolog

Redo: (10) mylength(_G377, _L215) ?

Call: (11) mylength(_G380, _L227) ?

Exit: (11) mylength([], 0) ?

^ Call: (11) _L215 is 0+1 ?

^ Exit: (11) 1 is 0+1 ?

Exit: (10) mylength([_G379], 1) ?

^ Call: (10) _L196 is 1+1 ?

^ Exit: (10) 2 is 1+1 ?

Exit: (9) mylength([_G376, _G379], 2) ?

^ Call: (9) 1 is 2+1 ?

^ Fail: (9) 1 is 2+1 ?

Redo: (11) mylength(_G380, _L227) ?

...

We’ll learn how to fix this later.

61

Logic Programming vs. Prolog

What happens if we change the order of rules:

% mylength(?L,?N) iff N is the length of list L

mylength([_|T],N):-mylength(T,NT), N is NT+1.

mylength([],0).

?- mylength([a,b,c], 3).

true.

?- mylength([a,b,c], N).

N = 3.

?- mylength(X, 2).

ERROR: Out of local stack

Not very “declarative”.

62

Negation as Failure

No equivalent of logical negation in Prolog:

• Prolog can only assert that something is true.

• Prolog cannot assert that something is false.

• Prolog can assert that the given facts and rules do not allow
something to be proven true.

63

Negation as Failure

Assuming that something unprovable is false is called negation as
failure.
(Based on a closed world assumption.)
The goal \+(G) (or not G) succeeds whenever the goal G fails.

?- member(b, [a,b,c]).

true

?- \+ member(b, [a,b,c]).

false.

?- not(member(b, [a,b,c])).

false.

?- not(member(b,[a,c])).

true.

64

Negation as Failure

Example: Disjoint Sets

overlap(S1,S2) :- member(X,S1),member(X,S2).

disjoint(S1,S2) :- \+(overlap(S1,S2)).

?- overlap([a,b,c],[c,d,e]).

true

?- overlap([a,b,c],[d,e,f]).

false

?- disjoint([a,b,c],[c,d,e]).

false

?- disjoint([a,b,c],[d,e,f]).

true

?- disjoint([a,b,c],X).

false %<---------Not what we wanted

65

Negation as Failure

overlap(S1,S2) :- member(X,S1),member(X,S2).

disjoint(S1,S2) :- \+(overlap(S1,S2)).

[trace] ?- disjoint([a,b,c],X).

Call: (7) disjoint([a, b, c], _G293) ? creep

Call: (8) overlap([a, b, c], _G293) ? creep

Call: (9) lists:member(_L230, [a, b, c]) ? creep

Exit: (9) lists:member(a, [a, b, c]) ? creep

Call: (9) lists:member(a, _G293) ? creep

Exit: (9) lists:member(a, [a|_G352]) ? creep

Exit: (8) overlap([a, b, c], [a|_G352]) ? creep

Fail: (7) disjoint([a, b, c], _G293) ? creep

false

66

Negation as Failure

Proper use of Negation as Failure
not(G) works properly only in the following cases:

1. When G is fully instantiated at the time prolog processes the
goal not(G).

(In this case, not(G) is interpreted to mean “goal G does not
succeed”.)

2. When all variables in G are unique to G, i.e., they don’t appear
elsewhere in the same clause.

(In this case, not(G(X)) is interpreted to mean “There is no
value of X that will make G(X) succeed”.)

67

Negation as Failure

woman(jane).

woman(marilyn).

famous(marilyn).

loves(john,X) :- woman(X), famous(X).

hates(john,X) :- \+ loves(john,X).

There are infinitely many women that John hates, not just Jane:

?- hates(john,jane).

true

?- hates(john,susan).

true

?- hates(john,betty).

true

...

68

Negation as Failure

woman(jane).

woman(marilyn).

famous(marilyn).

loves(john,X) :- woman(X), famous(X).

hates(john,X) :- \+ loves(john,X).

Plus John hates many things:

?- hates(john,pizza).

?- hates(john,john).

We say that the rule hates is not safe. Solution:

hates(john,X) :- woman(X), \+ loves(john,X).

woman(X) is called a guard — it protects from making unwanted
inferences.

69

Execution of Prolog Programs

• Unification: variable bindings.

• Backward Chaining/
Top-Down Reasoning/
Goal-Directed Reasoning:
Reduces a goal to one or more subgoals.

• Backtracking:
Systematically searches for all possible solutions that can be
obtained via unification and backchaining.

70

