list comprehensions

map:: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

filter:: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

cross:: [a]l -> [b] -> [(a,b)]
cross xs ys = [(x,y) | x <- xs, y <- ys]

quicksort :: Ord a => [a] -> [a]

quicksort [] = []
quicksort (x:xs)

quicksort [y | y <- xs, y < x 1]
++ [x]
++ quicksort [y | y <= xs, y >= x]

709

list comprehensions

“Python’s list comprehension syntax is taken (with trivial
keyword /symbol modifications) directly from Haskell. The idea
was just too good to pass up.” wiki.python.org

>>> [x + 42 for x in range(5)]
[42, 43, 44, 45, 46]

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
(1, 3, 1, 9, 2, 3), 2, O, (2, 9, @, D, G, D]

20

wiki.python.org

playing with Haskell

Ranges:

prompt> [1..10]
[1,2,3,4,5,6,7,8,9,10]
prompt> [1,3..10]
[1,3,5,7,9]

prompt> [10,9..1]
(10,9,8,7,6,5,4,3,2,1]
prompt> [10,8..1]
[10,8,6,4,2]

21

lazy evaluation

Don't evaluate before you have to:

and' :: Bool -> Bool -> Bool
and' False _ = False
and' X = X

prompt> head []

***x Exception: prompt.head: empty list
prompt> and' False (head [] == 2)

False

How did this work?

29

lazy evaluation

Expressions are not evaluated when they are bound to
variables, but their evaluation is deferred until their results
are needed by other computations.

Arguments are not evaluated before they are passed to a
function, but only when their values are actually used.

A thunk is an unevaluated value with a recipe that explains
how to evaluate it.

It is possible to partially evaluate an expression, for example
(thunk, thunk).

Aside: lookup Racket's thunk function.

a3

lazy evaluation

length [] =0
length (_:xs) = 1 + length xs

What do we need to evaluate in the expression
length [4271234, 4272345, 4273456]7

length thunk{[42°1234, 4272345, 42°3456]} pattern match

length (_ : thunk{[42°2345, 42°3456]}) function body
1 + length thunk{[42°2345, 427°3456]} pattern match
1 + length (_ : thunk{[42°3456]}) function body
1 + (1 + length thunk{[42°3456]}) pattern match
1+ (1 + length (_ : thunk{[1})) function body
1+ (1 + (1 + length thunk{[1})) pattern match
1+ (1 + (1 + length [1)) function body
1+ @+ (1+0) display

3

lazy evaluation

ones = 1 : ones

What kind of a thing is ones?
What happens if we evaluate ones in the REPL?
But we can use it in other ways. For example:

prompt> tenOnes = take 10 ones
[(t,1,1,1,1,1,1,1,1,1]

How does this work? We need to know how take is defined:

take _ [1 = []
take 0 _ = []
take n (x:xs) = x : take (n-1) xs

8K

lazy evaluation

take [1=10

take 0 _ = []

take n (x:xs) = x : take (n-1) xs

Then:

take 3 thunk{ones}

take 3 (1 : thunk{ones})

1: take thunk{3-1} thunk{ones}

1: take 2 (1 : thunk{ones})

1:1 : take thunk{2-1} thunk{ones}
1:1 : take 1 (1 : thunk{ones})
1:1:1 : take thunk{1-1} thunk{ones}
1:1:1 : take 0 _

1:1:1: []

pattern match
function body
pattern match
function body
pattern match
function body
pattern match
function body

86A

lazy evaluation

More fun examples:
numsFrom n =n : numsFrom (n + 1)

nats = numsFrom O
nats =0 : map (+1) nats

squares =map ("2) nats

odds = filter odd nats
evens = filter even nats

fibs =0 : 1 : zipWith (+) fibs (tail fibs)
fibs =0:1:[x+y | (x, y) <- zip fibs (tail fibs)]

prime x =null [y | y <= [2..(x-1)], x "mod” y == 0]
primes = [x | x <- numsFrom 2, prime x]
primes = filter prime $ numsFrom 2

a7

