
list comprehensions

map:: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

filter:: (a -> Bool) -> [a] -> [a]

filter p xs = [x | x <- xs, p x]

cross:: [a] -> [b] -> [(a,b)]

cross xs ys = [(x,y) | x <- xs, y <- ys]

quicksort :: Ord a => [a] -> [a]

quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y < x]

++ [x]

++ quicksort [y | y <- xs, y >= x]

79

list comprehensions

“Python’s list comprehension syntax is taken (with trivial
keyword/symbol modifications) directly from Haskell. The idea
was just too good to pass up.” wiki.python.org

>>> [x + 42 for x in range(5)]

[42, 43, 44, 45, 46]

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

80

wiki.python.org

playing with Haskell

Ranges:

prompt> [1..10]

[1,2,3,4,5,6,7,8,9,10]

prompt> [1,3..10]

[1,3,5,7,9]

prompt> [10,9..1]

[10,9,8,7,6,5,4,3,2,1]

prompt> [10,8..1]

[10,8,6,4,2]

81

lazy evaluation

Don’t evaluate before you have to:

and' :: Bool -> Bool -> Bool

and' False _ = False

and' _ x = x

prompt> head []

*** Exception: prompt.head: empty list

prompt> and' False (head [] == 2)

False

How did this work?

82

lazy evaluation

• Expressions are not evaluated when they are bound to
variables, but their evaluation is deferred until their results
are needed by other computations.

• Arguments are not evaluated before they are passed to a
function, but only when their values are actually used.

• A thunk is an unevaluated value with a recipe that explains
how to evaluate it.

• It is possible to partially evaluate an expression, for example
(thunk, thunk).

• Aside: lookup Racket’s thunk function.

83

lazy evaluation

length [] = 0

length (_:xs) = 1 + length xs

What do we need to evaluate in the expression
length [42^1234, 42^2345, 42^3456]?

length thunk{[42^1234, 42^2345, 42^3456]} pattern match

length (_ : thunk{[42^2345, 42^3456]}) function body

1 + length thunk{[42^2345, 42^3456]} pattern match

1 + length (_ : thunk{[42^3456]}) function body

1 + (1 + length thunk{[42^3456]}) pattern match

1 + (1 + length (_ : thunk{[]})) function body

1 + (1 + (1 + length thunk{[]})) pattern match

1 + (1 + (1 + length [])) function body

1 + (1 + (1 + 0)) display

3

84

lazy evaluation

ones = 1 : ones

What kind of a thing is ones?
What happens if we evaluate ones in the REPL?
But we can use it in other ways. For example:

prompt> tenOnes = take 10 ones

[1,1,1,1,1,1,1,1,1,1]

How does this work? We need to know how take is defined:

take _ [] = []

take 0 _ = []

take n (x:xs) = x : take (n-1) xs

85

lazy evaluation

take _ [] = []

take 0 _ = []

take n (x:xs) = x : take (n-1) xs

Then:

take 3 thunk{ones} pattern match

take 3 (1 : thunk{ones}) function body

1: take thunk{3-1} thunk{ones} pattern match

1: take 2 (1 : thunk{ones}) function body

1:1 : take thunk{2-1} thunk{ones} pattern match

1:1 : take 1 (1 : thunk{ones}) function body

1:1:1 : take thunk{1-1} thunk{ones} pattern match

1:1:1 : take 0 _ function body

1:1:1: []

86

lazy evaluation

More fun examples:
numsFrom n = n : numsFrom (n + 1)

nats = numsFrom 0

nats = 0 : map (+1) nats

squares = map (^2) nats

odds = filter odd nats

evens = filter even nats

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fibs = 0:1:[x+y | (x, y) <- zip fibs (tail fibs)]

prime x = null [y | y <- [2..(x-1)], x `mod` y == 0]

primes = [x | x <- numsFrom 2, prime x]

primes = filter prime $ numsFrom 2

87

