
currying

Built-in curry and uncurry:

curry :: ((a, b) -> c) -> a -> b -> c

prompt> member

member :: Eq t => (t, [t]) -> Bool

prompt> curry member

curry member :: Eq t => t -> [t] -> Bool

prompt> memberC = curry member

prompt> memberC 1 [1, 2, 3]

True

42

currying

Built-in curry and uncurry:

uncurry :: (a -> b -> c) -> (a, b) -> c

prompt> sum'

sum' :: Num a => a -> a -> a

prompt> uncurry sum'

uncurry sum' :: Num c => (c, c) -> c

prompt> sum'' = uncurry sum'

prompt> sum'' (2, 3)

5

43

functions and operators

Any two-parameter curried function can be used as an operator:

prompt> elem 3 [2,3,4]

True

prompt> 3 `elem` [2,3,4]

True

Any operator can be used as a function:

prompt> (*) 2 3

6

prompt> (:) 2 [3,4]

[2,3,4]

44

sections

prompt> map (+2) [1,2,3]

[3,4,5]

prompt> map (2+) [1,2,3]

[3,4,5]

prompt> map (/2) [1,2,3]

[0.5,1.0,1.5]

prompt> map (2/) [1,2,3]

[2.0,1.0,0.6666666666666666]

prompt> map (:[42]) [1,2,3]

[[1,42],[2,42],[3,42]]

prompt> map (42:) [[1],[2,3],[4,5]]

[[42,1],[42,2,3],[42,4,5]]

45

type synonyms

We can give existing types new names. Syntax:

type NewType = OldType

NewType becomes an alias (a synonym) for the existing type
OldType.

type String = [Char]

type PhoneNumber = String

type Name = String

type PhoneBook = [(Name,PhoneNumber)]

46

user defined datatypes

General Syntax:

data NewType =

Cons1 Type1

| Cons2 Type2

...

| ConsN TypeN

• Defines a new type called NewType.

• Type1,...,TypeN are previously defined types.

• Cons1,...,ConsN are constructors. They are used to create
a value of NewType type.

• Type is omitted if a constructor does not need any argument
(such constructors are called constants).

47

enumerated types

All constructors are constants (no argument).
Example:

data Colour = Red | Green | Blue

c = Red

colorName Red = "red"

colorName Green = "green"

colorName Blue = "blue"

prompt> :t c

c :: Colour

prompt> :t colorName

colorName :: Colour -> [Char]

prompt> colorName Blue

"blue"
48

variant types

Create union of different types:

data Text = Letter Char | Word [Char]

textLen (Letter _) = 1

textLen (Word w) = length w

prompt> :t textLen

textLen :: Text -> Int

49

recursive types

A datatype can be recursive, of course: e.g. a linked list (ignore
the deriving business for now)

data LList = Nil | Node (Int, LList) deriving Show

llist = Node (1, Node (2, Node(3, Nil)))

llistLen Nil = 0

llistLen (Node (_,rest)) = 1 + llistLen rest

llistLen :: LList -> Int

50

recursive types

What about a polymorphic linked list?

data LList a = Nil | Node (a, LList a) deriving Show

llist1 = Node (1, Node (2, Node(3, Nil)))

llist2 = Node ('1', Node ('2', Node ('3', Nil)))

llistLen Nil = 0

llistLen (Node (_,rest)) = 1 + llistLen rest

llistLen :: LList t -> Int

51

recursive types

Example: Tree representation of simple mathematical expressions.

(| − 3|+ 2) + ((−1) + 4) ∗ 7)

What is the datatype we need?

data MathExpr =

Leaf Int

| Unary (Int -> Int, MathExpr)

| Binary (Int -> Int -> Int, MathExpr, MathExpr)
52

recursive types

The tree in the figure:

t = Binary((+),

Binary((+),

Unary(abs,

Unary ((0-),

Leaf 3)),

Leaf 2),

Binary((*),

Binary((+),

Unary((0-),

Leaf 1),

Leaf 4),

Leaf 7))

53

recursive types

Evaluating the tree:

eval (Leaf v) = v

eval (Unary (f,t)) = f (eval t)

eval (Binary (f,l,r)) = f (eval l) (eval r)

Type of eval?

54

curried type/value constructors

Type/value constructors are simply functions. And so they may be
curried.

Value constructor:

data BTree a = Empty | Node (a, BTree a, BTree a)

BTree is a type constructor. Empty and Node are value
constructors.

Curried value constructor:

data BTree a = Empty | Node a (BTree a) (BTree a)

55

curried type/value constructors

data BTree a = Empty | Node a (BTree a) (BTree a)

Example:

t = (Node 1 (Node 2 (Node 3 Empty Empty)

(Node 4 Empty Empty))

(Node 5 (Node 6 Empty Empty)

(Node 7 Empty

(Node 8 Empty Empty))))

prompt> :type t

t :: BTree Integer

56

curried value constructors

data BTree a = Empty | Node a (BTree a) (BTree a)

prompt> :t Node "a"

Node "a" :: BTree [Char] -> BTree [Char] -> BTree [Char]

prompt> :t Node "a" Empty

Node "a" Empty :: BTree [Char] -> BTree [Char]

prompt> :t Node "a" Empty (Node "a" Empty Empty)

Node "a" Empty (Node "a" Empty Empty) :: BTree [Char]

57

curried value constructors

data BTree a = Empty | Node a (BTree a) (BTree a)

tree2list :: (BTree a) -> [a]

tree2list Empty = []

tree2list (Node v l r) =

(tree2list l) ++ [v] ++ (tree2list r)

A better solution?

58

curried value constructors

(Ignore the “deriving” business for now).

data Tree a = Leaf a |

Internal (Tree a) (Tree a) a deriving Show

makeLeafForest = map Leaf

makeForest = map $ Internal (Leaf 42) (Leaf 24)

prompt> makeLeafForest [1,2,3,4,5]

[Leaf 1,Leaf 2,Leaf 3,Leaf 4,Leaf 5]

Prelide> makeForest [1,2,3,4,5]

[Internal (Leaf 42) (Leaf 24) 1,

Internal (Leaf 42) (Leaf 24) 2,

Internal (Leaf 42) (Leaf 24) 3,

Internal (Leaf 42) (Leaf 24) 4,

Internal (Leaf 42) (Leaf 24) 5]

59

mutually recursive types

Example: a tree with labeled branches:

data Tree a = Empty

| Node (Branch a) (Branch a)

data Branch a = Branch a (Tree a)

60

mutually recursive types

The tree in the figure:

lt =

Node(Branch 1

(Node (Branch 2 Empty)

(Branch 3 (Node (Branch 4 Empty)

(Branch 5 Empty)))))

(Branch 6

(Node (Branch 7 Empty)

(Branch 8 Empty)))

61

mutually recursive types

data Tree a = Empty

| Node (Branch a) (Branch a)

data Branch a = Branch a (Tree a)

Return the list of branch labels, in order:

listTree Empty = []

listTree (Node l r) = (listBranch l) ++ (listBranch r)

listBranch (Branch b t) = b : listTree t

listTree :: Tree a -> [a]

listBranch :: Branch a -> [a]

62

recursive types

1. A powerful tool for constructing new types.

2. The structure of the datatype suggests the structure of the
recursive function on the datatype.

63

infix value constructors

data Rational = Integer :/ Integer deriving Show

r1 = 1 :/ 2

r2 = 1 :/ 3

addRat (x0 :/ y0) (x1 :/ y1) =

(x0 * y1 + x1 * y0) :/ (y0 * y1)

prompt> r1 `addRat` r2

5 :/ 6

Thus (:) :: a -> [a] -> [a] is no different.

64

curried type constructors

data Either a b = Left a | Right b

prompt> :kind Either

Either :: * -> * -> *

But let’s not go there...

65

