
CSCC24 – Principles of Programming Languages

Anya Tafliovich1

1with thanks to S.McIlraigh, G.Penn, P.Ragde
1

motivation

Consider the following Scheme function definition:

(define foobar

(lambda (x)

(if (even? x)

(car x)

Anything wrong?

We are able to figure it out before run-time. Can’t a PL support
this kind of reasoning?

2

motivation

• It could be worse!

• At least Scheme checks that x is a pair before accessing
memory in the execution of (cdr x) .

• In fact, Scheme is type safe: it will never execute (op arg)

if op is not applicable to arg .

• Languages which are not type safe (e.g., C) allow unsafe
memory accesses: a major source of security vulnerabilities.

3

motivation

• Want to catch all errors at compile-time.
• Extremely difficult, if not impossible.

• Identify a certain class of errors and guarantee to catch all of
them.

• Catch as many errors as possible?
• Costly: programmers’ expertise, computational resources, etc.
• Slower development, less expressive languages.
• Used in development of safety-critical systems.

• Compromise: type systems.
• Guarantees range widely: from basic safety of memory accesses

to just about anything you want.

4

typing

A type is:

“A name for a set of values and some operations which can be
performed on that set of values.”

“A collection of computational entities that share some common
property.”

5

typing

Some examples of types (in Haskell notation):

• Int : the integers

• Integer : the integers, unbounded

• Foat, Double : the real floating point numbers, single and
double precision

• Char : the characters

• Bool : the booleans (True and False)

• Int → Bool : the functions that take integers as input and
return booleans as output.

What constitutes a type is language dependent.

6

typing

Benefits of having a type system:

• Easier to debug programs: compiler can catch many errors.

• Static analysis: a lot of useful information about the program
can be obtained at compile-time.

• Efficiency: typing can be used by the compiler to generate
quicker code.

• Correctness: typing can be used (by the programmer or by the
compiler) to prove correctness of code.

• Documentation: types declare your intent with well-chosen
names.

7

typing

A programming language is type safe if no program is allowed to
violate its type distinctions.

The process of verifying and enforcing the constraints of types is
called type checking.

Type checking can either occur at compile-time (static type
checking) or at run-time (dynamic type checking).

8

static vs dynamic typing

Dynamic type checking:

• Performed at run-time.

• Slower execution: need to carry type information around, lots
of run-time checks.

• More flexible.

• Easier refactoring.

Static type checking:

• Faster execution.

• Compiler can do a lot of optimization.

• Some argue that resulting programs are safer.

• Some argue that resulting programs are more elegant and
modular.

• Some argue that programmers will write horrible code to get
around a static type-checker.

9

static typing

Explicit static typing: code contains type annotations.
• For example, in Java:

• Variable declarations
int x,y,z;

• Function headers
public static void main(String[] arg)

Type inference: infer all types from the code that does not contain
explicit type annotations.

• foo (x, y, z) = if x then "hello, " ++ y

else "hi, " ++ z

10

Haskell data types

Basic types:

• () — the only member is ().

• Bool — booleans.

• Int, Integer — integers.

• Float, Double — reals.

• Char — characters.

More types:

• (⟨type0⟩, ⟨type1⟩, . . . , ⟨typen⟩) — tuples.

• [⟨type⟩]—: lists.

• ⟨input-type⟩ → ⟨output-type⟩ — functions.

11

Haskell basic types

(): (called “unit”) this type has only one element ()

prompt> ()

()

prompt> :type ()

() :: ()

prompt> :t ()

() :: ()

prompt>

Reading the above snippet of the GHCi interpreter session:

• evaluate (), please

• what is the type of ()?

• what is the type of () (and I don’t like typing)?

12

Haskell basic types

Bool: this type has two elements: True and False.

Operations on Bools: not, &&, ||, if, ...

prompt> True && False

False

prompt> True || False

True

prompt> not True

False

prompt> if False then 'a' else 'b'

'b'

13

Haskell basic types

Lots of number types (more on this later): Int, Integer,

Float, Double

prompt> 3.14 + 3.14 ** 2 - 42

-29.0004

prompt> 3.14 + 3.14 ** 2 - 42 > -30

True

Read the documentation for all that is available for number types.

14

Haskell basic types

Char: { ’a’, ’b’, ’c’, ... }

15

Haskell data types

More types:

• (⟨type0⟩, ⟨type1⟩, . . . , ⟨typen⟩) — tuples.

• [⟨type⟩] — lists.

• ⟨input-type⟩ → ⟨output-type⟩ — functions.

16

Haskell types

A tuple packs together several types.

prompt> ('a','b',True)

('a','b',True)

prompt> :t ('a','b',True)

('a','b',True) :: (Char, Char, Bool)

17

Haskell types

In Haskell all elements in a list must have the same type.

prompt> [1,2,3]

[1,2,3]

prompt> ['a','b','c']

"abc"

prompt> [True,False]

[True,False]

prompt> [[42],[24,3]]

[[42],[24,3]]

prompt> [True,False,"nono"]

<interactive>...:

Couldn't match expected type 'Bool' with actual type '[Char]'

In the expression: "nono"

In the expression: [True, False, "nono"]

In an equation for 'it': it = [True, False, "nono"]

[] is the empty list.

Constructor: :

More operations: ++, null, length, map, foldr, ...

18

Haskell types — list

Some examples:

prompt> 1 : [2,3]

[1,2,3]

prompt> [1,2] ++ [2,3]

[1,2,2,3]

prompt> length [1,2]

2

prompt> map abs [1,-2,-3,4]

[1,2,3,4]

prompt> null [1,2]

False

prompt> null []

True

prompt> foldr (+) 0 [1,2,3] # more on this (+) later

6

19

Haskell syntax

A variable declaration in Haskell looks like:

• ⟨name⟩ = ⟨expr⟩
• x = 42 + 24

• (define x (+ 42 24))

20

Haskell functions

The syntax for anonymous functions in Haskell is:

• \⟨arg⟩ -> ⟨body⟩
• \x -> x + 1

• (lambda (x) (+ x 1))

Giving a name to a function:

• ⟨name⟩ = \⟨arg⟩ -> ⟨body⟩
• inc = \x -> x + 1

• (define inc (lambda (x) (+ x 1)))

Or:

• ⟨name⟩ ⟨arg⟩ = ⟨body⟩
• inc x = x + 1

• (define (inc x) (+ x 1))

In Haskell every function accepts exactly one argument.This
argument could be a tuple.

21

Haskell types

The type of a function is determined by the type of the input and
the type of the output.

Some examples:

prompt> implies (x, y) = if x then y else True

prompt> :t implies

prompt> greet x = "hello, " ++ x

prompt> :t greet

prompt> maybeGreet (g,x) =

if g then "hello, " ++ x else x

prompt> :t maybeGreet

22

parametric polymorphism

What is the type of \x -> x?

prompt> :t (\x -> x)

(\x -> x) :: t -> t

prompt> id = \x -> x

prompt> id 324

324

prompt> id "foo"

"foo"

prompt> id [1,2,3]

[1,2,3]

prompt> :t (id "foo")

(id "foo") :: [Char]

23

parametric polymorphism

prompt> id = \x -> x

prompt> :t id

id :: t -> t

t is a type variable.

id is a polymorphic function.

α → α means “for every valid type α, α → α”
∀α · α → α

When id is applied to 324 , the type variable α is instantiated
to int .

24

parametric polymorphism

Examples:

choose (a,b,c) = if a then b else c

swap (x,y) = (y,x)

25

parametric polymorphism

What is the type of the following function?

repeatTwice lst =

if null lst then lst

else [head lst,head lst] ++ repeatTwice (tail lst)

List is a polymorphic data type.

26

pattern matching

Value declaration (general form): <pat> = <exp>

prompt> (foo,bar) = ('a','b')

prompt> foo

'a'

prompt> bar

'b'

prompt> [foo,bar] = ["foo","bar"]

prompt> foo

"foo"

prompt> bar

"bar"

prompt> x : xs = [1,2,3]

prompt> x

1

prompt> xs

[2,3] 27

pattern matching

“ ” is “don’t care”: matches everything, binds nothing

prompt> (_,x,y) = (1,2,3)

prompt> x

2

prompt> y

3

prompt> [x,_,z] = [1,2,3]

prompt> x

1

prompt> z

3

28

pattern matching

Function declaration with pattern matching:

<name> <pattern1> = <exp1>

<name> <pattern2> = <exp2>

.

.

.

<name> <patternN> = <expN>

This means: the function name is name. It takes one argument (as
any other Haskell function). It tries to match the argument to
pattern1. If it succeeds, it returns value of exp1. Otherwise, tries
to match the argument to pattern2. Etc, etc.

29

pattern matching

For example we can (and definitely should!) rewrite repeatTwice
to use pattern matching:

repeatTwice [] = []

repeatTwice (x : xs) = x : x : repeatTwice xs

len [] = 0

len (x : xs) = 1 + len xs

Even better:

len [] = 0

len (_ : xs) = 1 + len xs

30

pattern matching

Function firstlist takes a list of pairs and returns the list
consisting of the first elements only. For example:

firstlist [] ==> []

firstlist [(1,2),(1,3)] ==> [1,1]

firstlist [(1,"a"),(2,"b"),(3,"c")] ==> [1,2,3]

firstlist [([],"a"),([1],"b"),([1,2],"c")] ==>

[[],[1],[1,2]]

31

Haskell notes

reverse [] = []

reverse (x : xs) = reverse xs ++ [x]

Let:

reverse xs =

let

rev ([], rs) = rs

rev (x : xs, rs) = rev (xs, x : rs)

in rev (xs, [])

32

Haskell notes

Where:

reverse xs = rev (xs, []) where

rev ([], rs) = rs

rev (x : xs, rs) = rev (xs, x : rs)

Guards:

abs x = if x >= 0 then x else -x

abs x | x >= 0 = x

| otherwise = -x

33

type classes

So, what is the type of 42?

42 :: Num a => a

What does this mean?
Num is a type class.

Num a is a type class constraint.

Num a => a means some type a in the class Num.

And what is the Num class? All types in this class must implement
addition, subtraction, multiplication, negation, absolute value, and
other. See Haskell documentation for details.

34

type classes

Type classes offer a controlled approach to overloading.

There are a number of predefined type classes: Eq, Ord, Show,

Read, Num, and more.

You can create instances of these classes.

You can also create your own classes and instantiate them.

(These are not like Python/Java classes. More like Java
interfaces.)

35

type classes

The Eq type class is all types with equality defined.

Types in this class provide == and /=.

member (_, []) = False

member (y, x : xs) = x == y || member (y, xs)

prompt> :type member

member :: (Eq t) => (t, [t]) -> Bool

(Eq t) is a type class constraint.

All the base types (Int, Bool, etc.) are members of Eq.

Much more on type classes later.

36

currying

• the process of transforming a function that takes multiple
arguments in a tuple as its argument, into a function that
takes just a single argument and returns another function
which accepts further arguments, one by one, that the original
function would receive in the rest of that tuple. [HaskellWiki]

• the technique of converting a function that takes multiple
arguments into a sequence of functions that each take a single
argument. [Wikipedia]

• A function that “takes two arguments and returns the result”
is a function that “takes one arguments and returns a
function that takes one argument and returns the result”.

• (a,b) -> c is transformed to a -> b -> c

37

currying

• (a,b) -> c is transformed to a -> b -> c

• (a,b,c) -> d is transformed to a -> b -> c -> d

• Notice that -> is right associative and, accordingly, function
application is left-associative. That is,

• a -> b -> c is the same as a -> (b -> c) , and
• f x y is the same as (f x) y

38

currying

With named functions:

sum (x,y) = x + y -- not curried version

sum' x y = x + y -- curried version

prompt> :t sum

sum :: Num a => (a, a) -> a

prompt> :t sum'

sum' :: Num a => a -> a -> a

39

currying

Currying gives us partial application:

sum' x y = x + y -- curried version

sum' :: Num a => a -> a -> a

prompt> sum' 2 3

5

prompt> sum' 2 -- partial application

sum' 2 :: Num a => a -> a

add2 = sum' 2

add2 :: Num a => a -> a

prompt> add2 3

5

40

currying

With anonymous functions:

prompt> :t (\x -> \y -> x + y)

(\x -> \y -> x + y) :: Num a => a -> a -> a

prompt> :t (\x -> \y -> x + y) 42

(\x -> \y -> x + y) 42 :: Num a => a -> a

41

currying

Built-in curry and uncurry:

curry :: ((a, b) -> c) -> a -> b -> c

prompt> member

member :: Eq t => (t, [t]) -> Bool

prompt> curry member

curry member :: Eq t => t -> [t] -> Bool

prompt> memberC = curry member

prompt> memberC 1 [1, 2, 3]

True

42

currying

Built-in curry and uncurry:

uncurry :: (a -> b -> c) -> (a, b) -> c

prompt> sum'

sum' :: Num a => a -> a -> a

prompt> uncurry sum'

uncurry sum' :: Num c => (c, c) -> c

prompt> sum'' = uncurry sum'

prompt> sum'' (2, 3)

5

43

functions and operators

Any two-parameter curried function can be used as an operator:

prompt> elem 3 [2,3,4]

True

prompt> 3 `elem` [2,3,4]

True

Any operator can be used as a function:

prompt> (*) 2 3

6

prompt> (:) 2 [3,4]

[2,3,4]

44

sections

prompt> map (+2) [1,2,3]

[3,4,5]

prompt> map (2+) [1,2,3]

[3,4,5]

prompt> map (/2) [1,2,3]

[0.5,1.0,1.5]

prompt> map (2/) [1,2,3]

[2.0,1.0,0.6666666666666666]

prompt> map (:[42]) [1,2,3]

[[1,42],[2,42],[3,42]]

prompt> map (42:) [[1],[2,3],[4,5]]

[[42,1],[42,2,3],[42,4,5]]

45

