
scope and evaluation

(let ([var1 expr1]

...

[varn exprn])

body)

Create local variables and bind them to expression results.

The scope of these variables is the body of the let statement.

Evaluation: expr1, ..., exprn are evaluated in some
undefined order, saved, and then assigned to var1, ..., varn.
In our interpreter, they have the appearance of being evaluated in
parallel.

41



scope and evaluation

Consider:

(define (sq-cube x)

(let ([sqr (* x x)]

[cube (* x (* x x))])

(list sqr cube))))

Want to reuse sqr.

42



scope and evaluation

Want to reuse sqr.

(define (sq-cube x)

(let ([sqr (* x x)]

[cube (* x sqr)])

(list sqr cube))))

But this does not work: sqr is undefined at the time of evaluating
(* x sqr)

43



scope and evaluation

(let* ([var1 expr1]

...

[varn exprn])

body)

The scope of each variable is the part of the let*-expression to
the right of the binding.

Evaluation: expr1, ..., exprn are evaluated sequentially,
from left to right.

44



scope and evaluation

Use let*:

(define (sq-cube x)

(let* ([sqr (* x x)]

[cube (* x sqr)])

(list sqr cube))))

45



scope and evaluation

(letrec ([var1 expr1]

...

[varn exprn])

body

)

Scope: Each binding of a variable has the entire letrec expression as its
region.

Evaluation: expr1, ..., exprn are evaluated in an undefined order,

saved, and then assigned to var1, ..., varn, with the appearance of

being evaluated in parallel.

46



scope and evaluation

(letrec ([my-even?

(lambda (x)

(if (= x 0)

#t

(my-odd? (- x 1))))]

[my-odd?

(lambda (x)

(if (= x 0)

#f

(my-even? (- x 1))))])

(if (and (my-even? 4) (not (my-odd? 4))

(my-odd? 5) (not (my-even? 5)))

42

0))

47



scope and evaluation

(let ([x 2]) (* x x))

⇒ 4

(let ([x 4]) (let ([y (+ x 2)]) (* x y)))

⇒ 24

(let ([x 4] [y (+ x 2)]) (* x y))

⇒ is an error: unbound variable x

(let* ([x 4] [y (+ x 2)]) (* x y))

⇒ 24

48



scope and evaluation

Question: Why would you ever prefer to use let instead of, say,
let*?

49



semantics of let

(let ((v1 e1)...(vn en)) expr)

⇕
((lambda (v1...vn) expr) e1...en)

AND

(let* ((v1 e1) (v2 e2)) expr)

⇕
((lambda (v1) ((lambda (v2) expr) e2)) e1)

All binding of values to variables is by parameter passing (≡
lambda reduction):
⇒ no assignment

50



closure

A closure is a record that contains:

• a function and

• an environment

(define (make-inc x)

(lambda (y) (+ x y)))

(define inc-by-5 (make-inc 5))

(define inc-by-10 (make-inc 10))

> (inc-by-5 100)

> (inc-by-10 100)

51



closure

A closure is a record that contains:

• a function and

• an environment

In the expression (lambda (y) (+ x y)) we say that x is a free
variable.

An environment captured when a closure is created will contain
bindings for all free variables.

52



closure

Consider:

(define x 100)

(define (plus-x y)

(+ x y))

(plus-x 10)

(let ([x 200])

(plus-x 10))

(set! x 200)

(plus-x 10)

What is the value of the first (plus-x 10)?
What is the value of the second (plus-x 10)?
What is the value of the third (plus-x 10)?
Note: set! is not a functional construct.

53



closure

In Python:

def make_inc(x):

return lambda y: x + y

inc_by_5 = make_inc(5)

inc_by_10 = make_inc(10)

>>> inc_by_5(100)

105

>>> inc_by_10(100)

110

>>>

54



closure

In Python, unlike in Racket:

def plus_x(y):

return x + y

>>> plus_x

<function plus_x at 0x7fc2ff72f670>

>>> x

NameError: name 'x' is not defined

Can define later:

x = 100

print(plus_x(10))

x = 200

print(plus_x(10))

Output:

55



closure

Consider:

(define counter

(let ([count 0])

(lambda ()

(set! count (+ count 1))

count)))

(counter)

(counter)

(counter)

An alternative to OOP?
Even more interesting...

56



closure

“Local” and “global” state variables?

(define make-counter

(let ([global-count 0])

(lambda ()

(let ([local-count 0])

(lambda ()

(set! global-count (+ global-count 1))

(set! local-count (+ local-count 1))

(cons global-count local-count))))))

(define counter1 (make-counter))

(define counter2 (make-counter))

(counter1)

(counter1)

(counter2)

(counter2)

(counter1)

An alternative to OOP?
57



closure

Exercise: In Python, define a counter similar to the one we defined
above in Scheme. Do not define any classes. Your counter should
behave as follows:

>>> counter1 = make_counter()

>>> counter2 = make_counter()

>>> counter1()

(1, 1)

>>> counter1()

(2, 2)

>>> counter2()

(1, 3)

>>> counter2()

(2, 4)

>>> counter1()

(3, 5)

>>>

58



recursion

linear recursion: there is at most one recursive call made in any
execution of function body.

flat recursion: recursion applied over ’top’ items of a list.

deep recursion: (aka tree recursion) recursion applied over all
items.

structural recursion:

(define my-func

(lambda (lst)

(cond ((empty? lst) ... )

(else ... (first lst) ...

(my-func (rest lst)) ... ))))

mutual recursion: functions call each other, rather than
themselves.

59



tail-recursion

• The recursive call is in the last function application in function
body.

• A language can implement tail-call optimization: no stack
required!

• Any Scheme implementation is required to be tail-recursive.
• Python does not implement tail-call optimization.
• A choice of laguage designers. Pros? Cons?

Let’s look at some examples...

60


