
scope and evaluation

(let ([var1 expr1]

...

[varn exprn])

body)

Create local variables and bind them to expression results.

The scope of these variables is the body of the let statement.

Evaluation: expr1, ..., exprn are evaluated in some
undefined order, saved, and then assigned to var1, ..., varn.
In our interpreter, they have the appearance of being evaluated in
parallel.
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scope and evaluation

Consider:

(define (sq-cube x)

(let ([sqr (* x x)]

[cube (* x (* x x))])

(list sqr cube))))

Want to reuse sqr.
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scope and evaluation

Want to reuse sqr.

(define (sq-cube x)

(let ([sqr (* x x)]

[cube (* x sqr)])

(list sqr cube))))

But this does not work: sqr is undefined at the time of evaluating
(* x sqr)
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scope and evaluation

(let* ([var1 expr1]

...

[varn exprn])

body)

The scope of each variable is the part of the let*-expression to
the right of the binding.

Evaluation: expr1, ..., exprn are evaluated sequentially,
from left to right.
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scope and evaluation

Use let*:

(define (sq-cube x)

(let* ([sqr (* x x)]

[cube (* x sqr)])

(list sqr cube))))
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scope and evaluation

(letrec ([var1 expr1]

...

[varn exprn])

body

)

Scope: Each binding of a variable has the entire letrec expression as its
region.

Evaluation: expr1, ..., exprn are evaluated in an undefined order,

saved, and then assigned to var1, ..., varn, with the appearance of

being evaluated in parallel.
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scope and evaluation

(letrec ([my-even?

(lambda (x)

(if (= x 0)

#t

(my-odd? (- x 1))))]

[my-odd?

(lambda (x)

(if (= x 0)

#f

(my-even? (- x 1))))])

(if (and (my-even? 4) (not (my-odd? 4))

(my-odd? 5) (not (my-even? 5)))

42

0))
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scope and evaluation

(let ([x 2]) (* x x))

⇒ 4

(let ([x 4]) (let ([y (+ x 2)]) (* x y)))

⇒ 24

(let ([x 4] [y (+ x 2)]) (* x y))

⇒ is an error: unbound variable x

(let* ([x 4] [y (+ x 2)]) (* x y))

⇒ 24
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scope and evaluation

Question: Why would you ever prefer to use let instead of, say,
let*?
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semantics of let

(let ((v1 e1)...(vn en)) expr)

⇕
((lambda (v1...vn) expr) e1...en)

AND

(let* ((v1 e1) (v2 e2)) expr)

⇕
((lambda (v1) ((lambda (v2) expr) e2)) e1)

All binding of values to variables is by parameter passing (≡
lambda reduction):
⇒ no assignment
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closure

A closure is a record that contains:

• a function and

• an environment

(define (make-inc x)

(lambda (y) (+ x y)))

(define inc-by-5 (make-inc 5))

(define inc-by-10 (make-inc 10))

> (inc-by-5 100)

> (inc-by-10 100)
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closure

A closure is a record that contains:

• a function and

• an environment

In the expression (lambda (y) (+ x y)) we say that x is a free
variable.

An environment captured when a closure is created will contain
bindings for all free variables.
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closure

Consider:

(define x 100)

(define (plus-x y)

(+ x y))

(plus-x 10)

(let ([x 200])

(plus-x 10))

(set! x 200)

(plus-x 10)

What is the value of the first (plus-x 10)?
What is the value of the second (plus-x 10)?
What is the value of the third (plus-x 10)?
Note: set! is not a functional construct.
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closure

In Python:

def make_inc(x):

return lambda y: x + y

inc_by_5 = make_inc(5)

inc_by_10 = make_inc(10)

>>> inc_by_5(100)

105

>>> inc_by_10(100)

110

>>>
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closure

In Python, unlike in Racket:

def plus_x(y):

return x + y

>>> plus_x

<function plus_x at 0x7fc2ff72f670>

>>> x

NameError: name 'x' is not defined

Can define later:

x = 100

print(plus_x(10))

x = 200

print(plus_x(10))

Output:
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closure

Consider:

(define counter

(let ([count 0])

(lambda ()

(set! count (+ count 1))

count)))

(counter)

(counter)

(counter)

An alternative to OOP?
Even more interesting...
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closure

“Local” and “global” state variables?

(define make-counter

(let ([global-count 0])

(lambda ()

(let ([local-count 0])

(lambda ()

(set! global-count (+ global-count 1))

(set! local-count (+ local-count 1))

(cons global-count local-count))))))

(define counter1 (make-counter))

(define counter2 (make-counter))

(counter1)

(counter1)

(counter2)

(counter2)

(counter1)

An alternative to OOP?
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closure

Exercise: In Python, define a counter similar to the one we defined
above in Scheme. Do not define any classes. Your counter should
behave as follows:

>>> counter1 = make_counter()

>>> counter2 = make_counter()

>>> counter1()

(1, 1)

>>> counter1()

(2, 2)

>>> counter2()

(1, 3)

>>> counter2()

(2, 4)

>>> counter1()

(3, 5)

>>>
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recursion

linear recursion: there is at most one recursive call made in any
execution of function body.

flat recursion: recursion applied over ’top’ items of a list.

deep recursion: (aka tree recursion) recursion applied over all
items.

structural recursion:

(define my-func

(lambda (lst)

(cond ((empty? lst) ... )

(else ... (first lst) ...

(my-func (rest lst)) ... ))))

mutual recursion: functions call each other, rather than
themselves.
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tail-recursion

• The recursive call is in the last function application in function
body.

• A language can implement tail-call optimization: no stack
required!

• Any Scheme implementation is required to be tail-recursive.
• Python does not implement tail-call optimization.
• A choice of laguage designers. Pros? Cons?

Let’s look at some examples...
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