exercise: dealing with ambiguity

Exercise:
<sentence> ::= \empty |
<course> is <adjective>. |
<sentence><sentence>
<course> ::= CSCA08 | CSCA48 | CSCBO7 | CSCB09 | CSCC24
<adjective> ::= great | fun | awesome

where \empty stands for the empty string.

® Demonstrate that the CFG is ambiguous.

® Provide a grammar that generates exactly the same language
as above and is not ambiguous.

20

exercise: dealing with ambiguity

<sentence> ::= \empty |
<course> is <adjective>. |
<sentence><sentence>
<course> ::= CSCAO8 | CSCA48 | CSCBO7 | CSCBO9 | CSCC24
<adjective> ::= great | fun | awesome

(@dp)m [{ers)] fis [(@dj)[e [(ers)] fis] [(ad))] g

CSCA08 CSCC24| awesome [CSCA48| [great

40

exercise: dealing with ambiguity

<sentence> ::= \empty |
<course> is <adjective>. |
<sentence><sentence>
<course> ::= CSCAO8 | CSCA48 | CSCBO7 | CSCBO9 | CSCC24
<adjective> ::= great | fun | awesome

(adp)m [{ers)] fis] [(ad])[™ [(ers)] fis] [(ad))]™m

CSCA08 CSCC24| awesome [CSCA48| [great

a1

exercise: dealing with ambiguity

<sentence> ::= \empty |
<course> is <adjective>. |
<sentence><sentence>
<course> ::= CSCAO8 | CSCA48 | CSCBO7 | CSCBO9 | CSCC24
<adjective> ::= great | fun | awesome

[CSCAO0S]

(adj)
CSCAO08

49

<sentence>

<course> ::
<adjective>

exercise: dealing with ambiguity

::= \empty |
<course> is <adjective>. |
<sentence><sentence>
= CSCA08 | CSCA48 | CSCBO7 | CSCB09 | CSCC24
::= great | fun | awesome

{s)

A3

exercise: dealing with ambiguity

<sentence> ::= \empty | <sentences>
<sentences> ::= <course> is <adjective>. |

<course> is <adjective>. <sentences>
<course> ::= CSCAO8 | CSCA48 | CSCBO7 | CSCBO9 | CSCC24
<adjective> ::= great | fun | awesome
<sentence> ::= \empty |

<course> is <adjective>. <sentence>
<course> ::= CSCAO8 | CSCA48 | CSCBO7 | CSCBO9 | CSCC24

<adjective> ::= great | fun | awesome

dealing with ambiguity

1. Can't always remove an ambiguity from a grammar by
restructuring productions.

2. An inherently ambiguous language does not possess an
unambiguous grammar.

Question. Is there an algorithm that can examine an arbitrary
context-free grammar and tell if it is ambiguous?

AR

an inherently ambiguous language

Suppose we want to generate the following language:
L={a'bck|ijk>1i=jorj=k}

Grammar:

Two parse trees for a'b'c'.

A6

limitations of CFGs

CFGs are not powerful enough to describe some languages.
Examples:

e [albic|ix>1}.
e {a"b"c™d" | m,n>1}.

Question: Is there an algorithm that can examine two arbitrary
CFGs and determine if they generate the same language?

A7

translation process summary

. Lexical Analysis:

Converts source code into sequence of tokens.

We use regular grammars and finite state automata
(recognizers).

. Syntactic Analysis:
Structures tokens into initial parse tree.
We use CFGs and parsing algorithms.

. Semantic Analysis:
Annotates parse tree with semantic actions.

. Code Generation:
Produces final machine code.

A8

more on this...

Take Compilers & Interpreters!

A0

