CSCC24 - Principles of Programming Languages
Formal Language Theory

Anya Tafliovich!

'with thanks to S.Mcllraigh, G.Penn, P.Ragde

who | am

Dr. Anya Tafliovich — Anya

2002: Hon.BSc: specialist in CS, major in Math
2004: MSc in Computer Science

2010: PhD in Computer Science

since 2010: Assistant Prof Teaching Stream at CMS
since 2016: Associate Prof Teaching Stream at CMS
since 2022: Professor Teaching Stream at CMS

Research Interests (in no particular order):

® Formal Methods of Software Design, Software Verification,
Automated Reasoning, Quantum Computing, Programming
Languages, Computer Science Education, Software Engineering
Education

Teaching: variety of courses
* A08/A48, A20, BO7, B63, C01, C24, D01, D72, D92, D94/95

who | am

rock climbing, running, reading, learning to play piano
should really start practising yoga again...
two children — 15 and 12 years old

two cats — 5 year-old

who you are

program of study?
year of study?

programming languages used:

® in university / school?
® at work?
® on your own?

programming languages you want / plan to learn?

course title

® | anguage

A language is an arbitrary association of a collection of forms
with their meanings.

® Syntax: specification of the forms.
® Semantics: specification of the meanings.

Examples:
® in English
® in Java

® Programming Language

A programming language is “a set of conventions for
communicating an algorithm.” (Horowitz)

® Natural vs Programming Languages

on programming

The main idea is to treat a program as a piece of literature,
addressed to human beings rather than to a computer. —
Donald Knuth

levels of programming languages

® High-level languages.

® Which high-level languages do you know?
® What makes them “high-level”?

® Assembly languages.

® Do you know an assembly language?
® [s it easy to program in?
® Why?

® Machine languages.

® Have you seen a machine language?
® How would you describe its usability?

translation

The process of converting a program written in a high-level
language into machine language is called translation.

There are two general methods.

source code

Compilation Interpretation

compiler

target code

input

output

interpreter output

Compilation: the whole program is translated before execution.
Interpretation: translate and execute, one statement at a time.

translation

Compilation:

Interpretation:

translation

Compilation:

Can execute translated program many times because the
entire translation is produced.
Program execution is faster because:

® compilation time is “overhead”: done once;
® the translator can do optimisation;

® can get rid of lots of information no longer needed for run-time.

Harder to provide useful feedback when debugging because
executing the target code.

Not easily portable (e.g., to a different OS / architecture /
etc.).

What compiled languages do you know?

10

translation

Interpretation:
® Must re-translate for every execution.
® Program execution is slower.

® More space needed at execution time.

® Easier to provide useful feedback when debugging.

Flexibility supports rapid prototyping.
Portable!
What interpreted languages do you know?

Why are so many modern languages interpreted?

11

translation — pseudo-compilation

A hybrid of compilation and interpretation.

source code

compiler

intermed. code

@@

® A compiler translates the whole program before execution, but
only into intermediate code.
® An interpreter translates and executes the intermediate code
one statement at a time.
® The intermediate code can be executed on any machine that
has an interpreter for the intermediate code.
Example: Java's intermediate code is called bytecode.

12

translation — Just-In-Time (JIT) compilation

Run in the interpreter.

Compile at run-time. (Huh??)
Compile on an “as needed” basis.
Run-time monitoring:

® |f something runs a lot, compile it.
® |f something runs a whole lot, compile it with optimisations.

13

thoughts on translation

We often say that a language is compiled or interpreted.

Technically, this is incorrect. A language itself is neither. A
particular implementation of a language can be compiled or
interpreted.

Many think that the future lies with hybrid implementations,
especially JIT compilation and optimisation.

Bottom line is always: given the task at hand, make an
informed decision about which language(s), and which
implementation of the language(s) to use.

14

on programming

The main idea is to treat a program as a piece of literature,
addressed to human beings rather than to a computer. —
Donald Knuth

Want to write code in a high-level language.

15

translation

The process of converting a program written in a high-level
language into machine language is called translation.
How is this done?

1

N

. Lexical analysis converts source code into sequence of tokens.

. Syntactic analysis structures tokens into initial parse tree.

. Semantic analysis annotates parse tree with semantic actions.

. Code generation produces final machine code.

16

translation — example

if 2 * x + 3 > y then print(x) else print(y)

Tokens:
if 2 * x + 3 > y then print (x) else print (y)
Parse tree:

(2 G I 0 SN B 2 R 0

I

W

N\

17

translation — prereq(?) knowledge

® For Lexical analysis:
Regular expressions, finite state automata.

® For Syntactic analysis:
Context free grammars, push-down automata.

18

