CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai

dictionaries (again)

Recall that a dictionary is an ADT that supports the following
operations on a set of elements with well-ordered key-values k-v:
1. insert(k, v): insert new key-value pair k-v
2. delete(k): delete the node with key k
3. search(k): find the node with key k (or value associated
with key k)
Q. If we know the keys are integers from 1 to K, what is a fast
and simple way to represent a dictionary?
A. Allocate an array of size K and store an element with key i in
the i*" cell (at index i — 1) of the array.

This data structure is called direct addressing.

Q. What is the asymptotic worst-case time for each of the
important operations?

A. O(1).

direct addressing

Q. What may be a problem with direct addressing?

A. If the keys are not bounded by a reasonable number, the array
will be huge! Space inefficient.

Example 1: Reading a text file

Suppose we want to keep track of the frequencies of each letter in
a text file.

Q: Why is this a good application of direct addressing?

A. There are only 256 ASCII characters, so we could use an array
of 256 cells, where the it cell will hold the count of the number of
occurrences of the i ASCII character in our text file. Example

2: Reading a data file of 32-bit integers
Suppose we want to keep track of the frequencies of each number.
Q: Is this a good or bad application of direct addressing?

A. Bad. The arrav would have to be of size 232 which is too big!

hashing: idea

® the range of keys is large
® but many keys are not “used”
® don't need to allocate space for all possible keys

A hash table:
e if keys come from a universe (set) U
® allocate a table (an array) of size m (where m < |U|)

® use a hash function h : U — {0,...,m— 1} to decide where
to store the element with key x

® x gets stored in position h(x) of the hash table

hashing: problem

If m < |U|, then there must be ki, ko € U such that k; # ky and
yet h(kl) = h(k2)

This is called a collision.

How we deal with collisions is called collision resolution. When we
study hashing, we mostly study collision resolution.

collision resolution: idea

Say we have a small address book and one of the letters fills up,
for example, “N"s. Where do you add the next “N" entry?

e flip to the next page
® have an overflow page at the very end

® write a little note explaining where to find rest of the “N"
names

Two general collision resolution approaches:

1. Closed Addressing: Keys are always stored in the bucket they
hash to — use additional data structure to store the keys in
the same bucket.

2. Open Addressing: Give a general rule of where to look next
(directions to another bucket).

closed addressing: chaining
Idea: store a doubly linked list at each entry in the hash table
nil

nil

II!!!I4'F*"IIHEII nil

nil

oo+

An element with key k1 and an element with key ko can both be
stored at position h(ky) = h(kz).

B W N R O

This is called chaining.

chaining: complexity

Assume we can compute the hash function h in constant time.
insert (k,v) takes: ©(1) time.
delete(k) takes:

® n := search(k)
® delete(n): ©(1) time.

search(k) takes: a little more complicated.

chaining: worst case

Q. What happens if [U| > m* n?

A. Any given hash function will put at least n key-values in some
entry of the hash table.

Q. What is the worst case?

A. Every entry of the table has no elements except for one entry
which has n elements = ©(n).

simple uniform hashing

We assume hash function h has the simple uniform hashing
property:

® any element is eqaully likely to hash into any of m buckets
® independently of where any other element has hashed to, and

® h distributes elements of U evenly across m buckets

o formally:

® sample space: set of elements with key-values from U

® for any probability distribution on U
[]

1
Pr(h(k)=i)= = forall 1 <i<m ke U and
m

> Pr(k) = L where Ui={keU]|hk)=i}
keU; m

10

load factor

Q. If the table has n elements, how many would you expect in any
one entry of the table ?

A. n/m.

® We call this ratio n/m the load factor, denoted by «.

® This simple uniform hashing assumption may or may not be
accurate depending on U, h and the probability distribution
for k e U.

11

average case analysis

Calculating the average-case run time:
® |et T4 be a random variable which counts the number of
elements checked when searching for key k.
® Let L; be the length of the list at entry i in the hash table.
® Either we are searching for an item in the table or not in the
table.

12

average case analysis: unsuccessful search

E(T)=> Pr(k)- Tk

keU
m
:Z Z Pr(k)- Tx split U into disjoint sets U;
i=1 keU;
m
Z Z Pr(k k not in: search entire list
i=1 keU;
1 m
=— L; uniform hashing
m <
i=1
n 1
=— all L;'s sum to n
m

average case analysis: successful search

Suppose we are searching for any of the n elements in the
hash table, with equal probability, 1/n.

The number of elements examined before we reach the
element x we are looking for is determined by the number of
elements inserted after x.

Expected number of elements examined is:

1 4+ number of elements inserted into the same bucket after x.

ki, ko, ..., kn : keys inserted, in order

Xjj indicator variable of event that h(k;) = h(k;)

then E[X;] = L
® see next slide for details

14

average case analysis: successful search

EXil =Pr((ki) = h(k;))

—ZPr 1) =Inh(k)=1)

m

indicator variable

= Z Pr(h) - Pr(h(kj) =) independent events
101

= Z - .= uniform hashing
—m m

1
m

15

average case analysis: successful search

1 n n
= 1+E Z X;
i=1 j=i+1
1 n n
= 1+ Y E[Xy) linearity of E
i=1 j=i+1
1 — 1
=— 1+ — revious slide
N3 j:ZH;I m ’

1 +n2 n?+n Lo
—_—. n R — .
n m 2m 2 2n

16

average case of search — closed addressing

® So the average-case running time of search under simple
uniform hashing with chaining is ©(1 + «).

® |f the number of slots is proportional to number of elements in
the table, then nis O(m) and so search takes constant time
on average.

17

open addressing

® Each entry in the hash table stores a fixed number ¢ of
elements.

® This has the immediate implication that we only use it when
n<cm.

® We will keep ¢ at 1 for today’s class.

To insert a new element if we get a collision:
® Find a new location to store the new element.
® \We need to know where we put it: for future retrieval.

® Search a well-defined sequence of other locations in the hash
table, until we find one that’'s not full.

This sequence is called a probe sequence.

18

probe sequences

Many methods for generating a probe sequence. For example:

e linear probing: try A[(h(k)+ i) mod m|, i=0,1, 2,...
e quadratic probing: try A[(h(k) + c1i + c2i?) mod m]

® double hashing: try A[(h(k) + i - h'(k)) mod m]
where ' is another hash function

10

linear probing

For a hash table of size m, key k and hash function h, the probe
sequence is calculated as:

si=(h(k)+i)mod m fori=0,1,2,...

® so = h(k) is called the home location for the item
® the problem:
® clustering!
® when we hash to a location within a group of filled locations

® we have to probe the whole group until we reach an empty slot
® we increase the size of the cluster

20

non-linear probing

Idea: the probe sequence does not involve steps of fixed size.

Example: Quadratic probing is where the probe sequence is
calculated as:
s;i = (h(k) + c1i + ©i®) mod m for i =0,1,2,...

But: probe sequences will still be identical for elements that hash
to the same home location.

21

double hashing

In double hashing we use a different hash function hy(k) to
calculate the step size.

The probe sequence is:
si=(h(k)+i-H(k))modm fori=0,1,2,...

Note that h’(k) should not be 0 for any k.

Also, we want to choose h’ so that, if h(ki) = h(kz) for two
keys ki, ko, it won't be the case that H' (ki) = H (k).

That is, the two hash functions don't cause collisions on the
same pairs of keys.

29

open addressing: complexity

e consider the complexity of search (k)
® worst case scenario?
® O(n) time

Suppose:
® the hash table has m locations
® the hash table contains n elements and n < m

® we search for a random key k in the table, with probablility %

Consider a random probe sequence for k:

® probe sequence is equally likely to be any permutation of
0,1,....m—1)

bl

open addressing: unsuccessful search

Let T be the number of probes performed in an unsuccessful
search.

Then E(T) =
E(T):Zi~Pr(T:i)

Statistics flashback!

24

open addressing: unsuccessful search

Let A; denote the event that the j-th probe occurs and it is to an
occupied slot.

Then, T > iiff A1, Ay, ..., A;_1 all occur.

Pr(T >1i)=

Pr(T > 1)
:PI’(Al ﬂAQﬂ---ﬂA,’_l)
=Pr(A1) - Pr(Az|A1) - Pr(As|A1 NAy) - ...
“Pr(Ai—1]A1 N NAZ2)

75

open addressing: unsuccessful search
Pr(Aj\Al n---N Aj—l) =7

Intuition:

® number of elements we have not yet seen: n— (j — 1)
® number of slots we have not yet seen: m — (j — 1)
Math: for 1 <j < m:

n—j+1
Pr(A;|/A1N---NA_1)= ———
r(AjlAs j-1) m—j+1
Then for 1 < < m:
n n-—1 n—i+2
Pr(T>)=— . ———
r(I) m m-—1 m—i+2
nyi—1
§(—> since n < m
m

26

open addressing: unsuccessful search

Now we can calculate the expected value of T, or the average-case

complexity of unsuccessful search(k).

E(T)= Z Pr(T > 1) stats flashback
i=1
:ZPr(T >0)+ Z Pr(T > 1)
i=1 i=m+1
< Z a 40 previous slide
i=1
i=0
1

= a<l

27

open addressing: insert

To insert a new element:
® perform an unsuccessful search (for an available location)
e insert: O(1)

. : 1
Thus, insert (k,v) requires at most 1= probes on average.

28

open addressing: successful search

Let T be the number of probes performed in a successful search.

Idea: successful search(k) reproduces the same probing sequence
as insert(k,v).

If k was the (i + 1)%" key inserted into the table, then the expected
number of probes made is at most

20

open addressing: successful search

n—1

=2y
Cn4&~m-—i
i=0
 on4—~m—i
i=0
m
1 .
= Z P approx by integrals
k=m—n+1
m 1
< —dx calculus

20

open addressing: successful search

E(T)< =In

1
a 11—«

This is pretty good!

o if the table is half full, the expected number of probes is
< 1.387

o if the table is 90% full, this number is < 2.559

21

open addressing: delete

What about delete?
® with closed addressing: easy
® first do search then
® O(1) un-link
® with open addressing: two approaches
® find an existing key to fill the hole
® tricky for probing, impossible for double hashing
® introduce a special deactivated status for locations
® free: can insert here, can stop searching here
® deactivated: can insert here, cannot stop searching here
® occupied: stores a key
® over time slows down all operations
® delete is problematic under open addressing

29

