
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

dictionaries (again)

Recall that a dictionary is an ADT that supports the following
operations on a set of elements with well-ordered key-values k-v :

1. insert(k, v): insert new key-value pair k-v

2. delete(k): delete the node with key k

3. search(k): find the node with key k (or value associated
with key k)

Q. If we know the keys are integers from 1 to K , what is a fast
and simple way to represent a dictionary?

A. Allocate an array of size K and store an element with key i in
the i th cell (at index i − 1) of the array.

This data structure is called direct addressing.

Q. What is the asymptotic worst-case time for each of the
important operations?

A. Θ(1).
2

direct addressing

Q. What may be a problem with direct addressing?

A. If the keys are not bounded by a reasonable number, the array
will be huge! Space inefficient.

Example 1: Reading a text file

Suppose we want to keep track of the frequencies of each letter in
a text file.

Q: Why is this a good application of direct addressing?

A. There are only 256 ASCII characters, so we could use an array
of 256 cells, where the i th cell will hold the count of the number of
occurrences of the i th ASCII character in our text file. Example

2: Reading a data file of 32-bit integers

Suppose we want to keep track of the frequencies of each number.

Q: Is this a good or bad application of direct addressing?

A. Bad. The array would have to be of size 232, which is too big! 3

hashing: idea

• the range of keys is large

• but many keys are not “used”

• don’t need to allocate space for all possible keys

A hash table:

• if keys come from a universe (set) U

• allocate a table (an array) of size m (where m < |U|)
• use a hash function h : U → {0, . . . ,m − 1} to decide where

to store the element with key x

• x gets stored in position h(x) of the hash table

4

hashing: problem

If m < |U|, then there must be k1, k2 ∈ U such that k1 ̸= k2 and
yet h(k1) = h(k2).

This is called a collision.

How we deal with collisions is called collision resolution. When we
study hashing, we mostly study collision resolution.

5

collision resolution: idea

Say we have a small address book and one of the letters fills up,
for example, “N”s. Where do you add the next “N” entry?

• flip to the next page

• have an overflow page at the very end

• write a little note explaining where to find rest of the “N”
names

Two general collision resolution approaches:

1. Closed Addressing: Keys are always stored in the bucket they
hash to — use additional data structure to store the keys in
the same bucket.

2. Open Addressing: Give a general rule of where to look next
(directions to another bucket).

6

closed addressing: chaining

Idea: store a doubly linked list at each entry in the hash table

0

1

2

3

4

k2 k1

k5 k4 k3

nil

nil

nil

nil

nil

An element with key k1 and an element with key k2 can both be
stored at position h(k1) = h(k2).

This is called chaining.

7

chaining: complexity

• Assume we can compute the hash function h in constant time.

• insert(k,v) takes: Θ(1) time.
• delete(k) takes:

• n := search(k)
• delete(n): Θ(1) time.

• search(k) takes: a little more complicated.

8

chaining: worst case

Q. What happens if |U| > m ∗ n?

A. Any given hash function will put at least n key-values in some
entry of the hash table.

Q. What is the worst case?

A. Every entry of the table has no elements except for one entry
which has n elements ⇒ Θ(n).

0

1

2

3

4

kn . . . k2 k1

nil

nil

nil

nil

nil

9

simple uniform hashing

We assume hash function h has the simple uniform hashing
property:

• any element is eqaully likely to hash into any of m buckets
• independently of where any other element has hashed to, and

• h distributes elements of U evenly across m buckets

• formally:
• sample space: set of elements with key-values from U
• for any probability distribution on U
•

Pr(h(k) = i) =
1

m
for all 1 ≤ i ≤ m, k ∈ U and

• ∑
k∈Ui

Pr(k) =
1

m
where Ui = {k ∈ U | h(k) = i}

10

load factor

Q. If the table has n elements, how many would you expect in any
one entry of the table ?

A. n/m.

• We call this ratio n/m the load factor, denoted by α.

• This simple uniform hashing assumption may or may not be
accurate depending on U, h and the probability distribution
for k ∈ U.

11

average case analysis

Calculating the average-case run time:

• Let Tk be a random variable which counts the number of
elements checked when searching for key k.

• Let Li be the length of the list at entry i in the hash table.

• Either we are searching for an item in the table or not in the
table.

12

average case analysis: unsuccessful search

E (T) =
∑
k∈U

Pr(k) · Tk

=
m∑
i=1

∑
k∈Ui

Pr(k) · Tk split U into disjoint sets Ui

=
m∑
i=1

∑
k∈Ui

Pr(k) · Li k not in: search entire list

=
1

m

m∑
i=1

Li uniform hashing

=
n

m
all Li ’s sum to n

=α

13

average case analysis: successful search

• Suppose we are searching for any of the n elements in the
hash table, with equal probability, 1/n.

• The number of elements examined before we reach the
element x we are looking for is determined by the number of
elements inserted after x .

• Expected number of elements examined is:
1 + number of elements inserted into the same bucket after x .

Let:

• k1, k2, . . . , kn : keys inserted, in order

• Xij indicator variable of event that h(ki) = h(kj)

• then E [Xij] =
1
m

• see next slide for details

14

average case analysis: successful search

E [Xij] =Pr(h(ki) = h(kj)) indicator variable

=
m∑
l=1

Pr(h(ki) = l ∩ h(kj) = l)

=
m∑
l=1

Pr(h(ki) = l) · Pr(h(kj) = l) independent events

=
m∑
l=1

1

m
· 1

m
uniform hashing

=
1

m

15

average case analysis: successful search

E (T) =
1

n

n∑
i=1

1 + E

 n∑
j=i+1

Xij


=
1

n

n∑
i=1

1 +
n∑

j=i+1

E [Xij]

 linearity of E

=
1

n

n∑
i=1

1 +
n∑

j=i+1

1

m

 previous slide

=
1

n

n∑
i=1

(
1 +

n − i

m

)
=
1

n
·
(
n +

n2

m
− n2 + n

2m

)
= 1 +

α

2
− α

2n

16

average case of search — closed addressing

• So the average-case running time of search under simple
uniform hashing with chaining is Θ(1 + α).

• If the number of slots is proportional to number of elements in
the table, then n is O(m) and so search takes constant time
on average.

17

open addressing

• Each entry in the hash table stores a fixed number c of
elements.

• This has the immediate implication that we only use it when
n ≤ cm.

• We will keep c at 1 for today’s class.

To insert a new element if we get a collision:

• Find a new location to store the new element.

• We need to know where we put it: for future retrieval.

• Search a well-defined sequence of other locations in the hash
table, until we find one that’s not full.

This sequence is called a probe sequence.

18

probe sequences

Many methods for generating a probe sequence. For example:

• linear probing: try A[(h(k) + i) mod m], i = 0, 1, 2,. . .

• quadratic probing: try A[(h(k) + c1i + c2i
2) mod m]

• double hashing: try A[(h(k) + i · h′(k)) mod m]
where h′ is another hash function

19

linear probing

For a hash table of size m, key k and hash function h, the probe
sequence is calculated as:

si = (h(k) + i) mod m for i = 0, 1, 2, . . .

• s0 = h(k) is called the home location for the item
• the problem:

• clustering!

• when we hash to a location within a group of filled locations
• we have to probe the whole group until we reach an empty slot
• we increase the size of the cluster

20

non-linear probing

Idea: the probe sequence does not involve steps of fixed size.

Example: Quadratic probing is where the probe sequence is
calculated as:

si = (h(k) + c1i + c2i
2) mod m for i = 0, 1, 2, . . .

But: probe sequences will still be identical for elements that hash
to the same home location.

21

double hashing

• In double hashing we use a different hash function h2(k) to
calculate the step size.

• The probe sequence is:

si = (h(k) + i · h′(k)) mod m for i = 0, 1, 2, . . .

• Note that h′(k) should not be 0 for any k .

• Also, we want to choose h′ so that, if h(k1) = h(k2) for two
keys k1, k2, it won’t be the case that h′(k1) = h′(k2).

• That is, the two hash functions don’t cause collisions on the
same pairs of keys.

22

open addressing: complexity

• consider the complexity of search(k)

• worst case scenario?

• Θ(n) time

Suppose:

• the hash table has m locations

• the hash table contains n elements and n < m

• we search for a random key k in the table, with probablility 1
n

Consider a random probe sequence for k:

• probe sequence is equally likely to be any permutation of
⟨0, 1, ...,m − 1⟩

23

open addressing: unsuccessful search

Let T be the number of probes performed in an unsuccessful
search.

Then E (T) =

E (T) =
∑
i

i · Pr(T = i)

Statistics flashback!

E (T) =
∞∑
i=0

i · Pr(T = i)

=
∞∑
i=0

i · (Pr(T ≥ i)− Pr(T ≥ i + 1))

=
∞∑
i=1

Pr(T ≥ i)

24

open addressing: unsuccessful search

Let Ai denote the event that the i-th probe occurs and it is to an
occupied slot.

Then, T ≥ i iff A1,A2, . . . ,Ai−1 all occur.

Pr(T ≥ i) =

Pr(T ≥ i)

=Pr(A1 ∩ A2 ∩ · · · ∩ Ai−1)

=Pr(A1) · Pr(A2|A1) · Pr(A3|A1 ∩ A2) · . . .
· Pr(Ai−1|A1 ∩ · · · ∩ Ai−2)

25

open addressing: unsuccessful search

Pr(Aj |A1 ∩ · · · ∩ Aj−1) =?

Intuition:

• number of elements we have not yet seen: n − (j − 1)

• number of slots we have not yet seen: m − (j − 1)

Math: for 1 ≤ j ≤ m:

Pr(Aj |A1 ∩ · · · ∩ Aj−1) =
n − j + 1

m − j + 1

Then for 1 ≤ i ≤ m:

Pr(T ≥ i) =
n

m
· n − 1

m − 1
· · · · · n − i + 2

m − i + 2

≤
(n

m

)i−1
since n < m

=αi−1

26

open addressing: unsuccessful search

Now we can calculate the expected value of T , or the average-case
complexity of unsuccessful search(k).

E (T) =
∞∑
i=1

Pr(T ≥ i) stats flashback

=
m∑
i=1

Pr(T ≥ i) +
∞∑

i=m+1

Pr(T ≥ i)

≤
∞∑
i=1

αi−1 + 0 previous slide

=
∞∑
i=0

αi

=
1

1− α
α < 1

27

open addressing: insert

To insert a new element:

• perform an unsuccessful search (for an available location)

• insert: O(1)

Thus, insert(k,v) requires at most 1
1−α probes on average.

28

open addressing: successful search

Let T be the number of probes performed in a successful search.

Idea: successful search(k) reproduces the same probing sequence
as insert(k,v).

If k was the (i + 1)st key inserted into the table, then the expected
number of probes made is at most

1

1− i
m

=
m

m − i

Then, averaging over all n keys in the table:

E (T) =
1

n

n−1∑
i=0

m

m − i

29

open addressing: successful search

E (T) =
1

n

n−1∑
i=0

m

m − i

=
m

n

n−1∑
i=0

1

m − i

=
1

α

m∑
k=m−n+1

1

k
approx by integrals

≤ 1

α

∫ m

k=(m−n+1)−1

1

x
dx calculus

=
1

α
ln

m

m − n

=
1

α
ln

1

1− α

30

open addressing: successful search

E (T) ≤ 1

α
ln

1

1− α

This is pretty good!

• if the table is half full, the expected number of probes is
< 1.387

• if the table is 90% full, this number is < 2.559

31

open addressing: delete

What about delete?
• with closed addressing: easy

• first do search then
• O(1) un-link

• with open addressing: two approaches
• find an existing key to fill the hole

• tricky for probing, impossible for double hashing

• introduce a special deactivated status for locations
• free: can insert here, can stop searching here
• deactivated: can insert here, cannot stop searching here
• occupied: stores a key

• over time slows down all operations
• delete is problematic under open addressing

32

