CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

dictionaries (again)

Recall that a dictionary is an ADT that supports the following operations on a set of elements with well-ordered key-values $k-v$:

1. insert (k, v): insert new key-value pair k-v
2. delete(k): delete the node with key k
3. search(k): find the node with key k (or value associated with key k)
Q. If we know the keys are integers from 1 to K, what is a fast and simple way to represent a dictionary?
A. Allocate an array of size K and store an element with key i in the $i^{t h}$ cell (at index $i-1$) of the array.

This data structure is called direct addressing.
Q. What is the asymptotic worst-case time for each of the important operations?
A. $\Theta(1)$.

direct addressing

Q. What may be a problem with direct addressing?
A. If the keys are not bounded by a reasonable number, the array will be huge! Space inefficient.

Example 1: Reading a text file
Suppose we want to keep track of the frequencies of each letter in a text file.

Q: Why is this a good application of direct addressing?
A. There are only 256 ASCII characters, so we could use an array of 256 cells, where the $i^{\text {th }}$ cell will hold the count of the number of occurrences of the $i^{\text {th }}$ ASCII character in our text file. Example
2: Reading a data file of 32 -bit integers
Suppose we want to keep track of the frequencies of each number.
Q: Is this a good or bad application of direct addressing?
A. Bad. The array would have to be of size 2^{32}, which is too big!

hashing: idea

- the range of keys is large
- but many keys are not "used"
- don't need to allocate space for all possible keys

A hash table:

- if keys come from a universe (set) U
- allocate a table (an array) of size m (where $m<|U|$)
- use a hash function $h: U \rightarrow\{0, \ldots, m-1\}$ to decide where to store the element with key x
- x gets stored in position $h(x)$ of the hash table

hashing: problem

If $m<|U|$, then there must be $k_{1}, k_{2} \in U$ such that $k_{1} \neq k_{2}$ and yet $h\left(k_{1}\right)=h\left(k_{2}\right)$.

This is called a collision.
How we deal with collisions is called collision resolution. When we study hashing, we mostly study collision resolution.

collision resolution: idea

Say we have a small address book and one of the letters fills up, for example, "N"s. Where do you add the next "N" entry?

- flip to the next page
- have an overflow page at the very end
- write a little note explaining where to find rest of the " N " names
Two general collision resolution approaches:

1. Closed Addressing: Keys are always stored in the bucket they hash to - use additional data structure to store the keys in the same bucket.
2. Open Addressing: Give a general rule of where to look next (directions to another bucket).

closed addressing: chaining

Idea: store a doubly linked list at each entry in the hash table

An element with key k_{1} and an element with key k_{2} can both be stored at position $h\left(k_{1}\right)=h\left(k_{2}\right)$.

This is called chaining.

chaining: complexity

- Assume we can compute the hash function h in constant time.
- insert (k,v) takes: $\Theta(1)$ time.
- delete(k) takes:
- n := search (k)
- delete(n): $\Theta(1)$ time.
- $\operatorname{search}(k)$ takes: a little more complicated.

chaining: worst case

Q. What happens if $|U|>m * n$?
A. Any given hash function will put at least n key-values in some entry of the hash table.
Q. What is the worst case?
A. Every entry of the table has no elements except for one entry which has n elements $\Rightarrow \Theta(n)$.

simple uniform hashing

We assume hash function h has the simple uniform hashing property:

- any element is eqaully likely to hash into any of m buckets
- independently of where any other element has hashed to, and
- h distributes elements of U evenly across m buckets
- formally:
- sample space: set of elements with key-values from U
- for any probability distribution on U

$$
\begin{aligned}
& \operatorname{Pr}(h(k)=i)=\frac{1}{m} \text { for all } 1 \leq i \leq m, k \in U \text { and } \\
& \sum_{k \in U_{i}} \operatorname{Pr}(k)=\frac{1}{m} \text { where } U_{i}=\{k \in U \mid h(k)=i\}
\end{aligned}
$$

load factor

Q. If the table has n elements, how many would you expect in any one entry of the table?
A. n / m.

- We call this ratio n / m the load factor, denoted by α.
- This simple uniform hashing assumption may or may not be accurate depending on U, h and the probability distribution for $k \in U$.

average case analysis

Calculating the average-case run time:

- Let T_{k} be a random variable which counts the number of elements checked when searching for key k.
- Let L_{i} be the length of the list at entry i in the hash table.
- Either we are searching for an item in the table or not in the table.

average case analysis: unsuccessful search

$$
\begin{array}{rlr}
E(T) & =\sum_{k \in U} \operatorname{Pr}(k) \cdot T_{k} & \\
& =\sum_{i=1}^{m} \sum_{k \in U_{i}} \operatorname{Pr}(k) \cdot T_{k} & \text { split } U \text { into disjoint sets } U_{i} \\
& =\sum_{i=1}^{m} \sum_{k \in U_{i}} \operatorname{Pr}(k) \cdot L_{i} & k \text { not in: search entire list } \\
& =\frac{1}{m} \sum_{i=1}^{m} L_{i} & \text { uniform hashing } \\
& =\frac{n}{m} & \text { all } L_{i} \text { 's sum to } n \\
& =\alpha &
\end{array}
$$

average case analysis: successful search

- Suppose we are searching for any of the n elements in the hash table, with equal probability, $1 / n$.
- The number of elements examined before we reach the element x we are looking for is determined by the number of elements inserted after x.
- Expected number of elements examined is:
$1+$ number of elements inserted into the same bucket after x.

Let:

- $k_{1}, k_{2}, \ldots, k_{n}$: keys inserted, in order
- $X_{i j}$ indicator variable of event that $h\left(k_{i}\right)=h\left(k_{j}\right)$
- then $E\left[X_{i j}\right]=\frac{1}{m}$
- see next slide for details

average case analysis: successful search

$$
\begin{array}{rlr}
E\left[X_{i j}\right] & =\operatorname{Pr}\left(h\left(k_{i}\right)=h\left(k_{j}\right)\right) & \text { indicator variable } \\
& =\sum_{l=1}^{m} \operatorname{Pr}\left(h\left(k_{i}\right)=I \cap h\left(k_{j}\right)=l\right) & \\
& =\sum_{l=1}^{m} \operatorname{Pr}\left(h\left(k_{i}\right)=l\right) \cdot \operatorname{Pr}\left(h\left(k_{j}\right)=l\right) & \text { independent events } \\
& =\sum_{l=1}^{m} \frac{1}{m} \cdot \frac{1}{m} & \\
& =\frac{1}{m} &
\end{array}
$$

average case analysis: successful search

$$
\begin{array}{rlr}
E(T) & =\frac{1}{n} \sum_{i=1}^{n}\left(1+E\left[\sum_{j=i+1}^{n} X_{i j}\right]\right) & \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[X_{i j}\right]\right) & \text { linearity of } E \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) & \text { previous slide } \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{n-i}{m}\right) & \\
& =\frac{1}{n} \cdot\left(n+\frac{n^{2}}{m}-\frac{n^{2}+n}{2 m}\right)=1+\frac{\alpha}{2}-\frac{\alpha}{2 n} &
\end{array}
$$

average case of search - closed addressing

- So the average-case running time of search under simple uniform hashing with chaining is $\Theta(1+\alpha)$.
- If the number of slots is proportional to number of elements in the table, then n is $\mathcal{O}(m)$ and so search takes constant time on average.

open addressing

- Each entry in the hash table stores a fixed number c of elements.
- This has the immediate implication that we only use it when $n \leq c m$.
- We will keep c at 1 for today's class.

To insert a new element if we get a collision:

- Find a new location to store the new element.
- We need to know where we put it: for future retrieval.
- Search a well-defined sequence of other locations in the hash table, until we find one that's not full.

This sequence is called a probe sequence.

probe sequences

Many methods for generating a probe sequence. For example:

- linear probing: try $A[(h(k)+i) \bmod m], i=0,1,2, \ldots$
- quadratic probing: try $A\left[\left(h(k)+c_{1} i+c_{2} i^{2}\right) \bmod m\right]$
- double hashing: try $A\left[\left(h(k)+i \cdot h^{\prime}(k)\right) \bmod m\right]$ where h^{\prime} is another hash function

linear probing

For a hash table of size m, key k and hash function h, the probe sequence is calculated as:

$$
s_{i}=(h(k)+i) \bmod m \quad \text { for } i=0,1,2, \ldots
$$

- $s_{0}=h(k)$ is called the home location for the item
- the problem:
- clustering!
- when we hash to a location within a group of filled locations
- we have to probe the whole group until we reach an empty slot
- we increase the size of the cluster

non-linear probing

Idea: the probe sequence does not involve steps of fixed size.
Example: Quadratic probing is where the probe sequence is calculated as:

$$
s_{i}=\left(h(k)+c_{1} i+c_{2} i^{2}\right) \bmod m \quad \text { for } i=0,1,2, \ldots
$$

But: probe sequences will still be identical for elements that hash to the same home location.

double hashing

- In double hashing we use a different hash function $h_{2}(k)$ to calculate the step size.
- The probe sequence is:

$$
s_{i}=\left(h(k)+i \cdot h^{\prime}(k)\right) \bmod m \quad \text { for } i=0,1,2, \ldots
$$

- Note that $h^{\prime}(k)$ should not be 0 for any k.
- Also, we want to choose h^{\prime} so that, if $h\left(k_{1}\right)=h\left(k_{2}\right)$ for two keys k_{1}, k_{2}, it won't be the case that $h^{\prime}\left(k_{1}\right)=h^{\prime}\left(k_{2}\right)$.
- That is, the two hash functions don't cause collisions on the same pairs of keys.

open addressing: complexity

- consider the complexity of search(k)
- worst case scenario?
- $\Theta(n)$ time

Suppose:

- the hash table has m locations
- the hash table contains n elements and $n<m$
- we search for a random key k in the table, with probablility $\frac{1}{n}$

Consider a random probe sequence for k :

- probe sequence is equally likely to be any permutation of $\langle 0,1, \ldots, m-1\rangle$

open addressing: unsuccessful search

Let T be the number of probes performed in an unsuccessful search.

Then $E(T)=$

$$
E(T)=\sum_{i} i \cdot \operatorname{Pr}(T=i)
$$

Statistics flashback!

$$
\begin{aligned}
E(T) & =\sum_{i=0}^{\infty} i \cdot \operatorname{Pr}(T=i) \\
& =\sum_{i=0}^{\infty} i \cdot(\operatorname{Pr}(T \geq i)-\operatorname{Pr}(T \geq i+1)) \\
& =\sum_{i=1}^{\infty} \operatorname{Pr}(T \geq i)
\end{aligned}
$$

open addressing: unsuccessful search

Let A_{i} denote the event that the i-th probe occurs and it is to an occupied slot.

Then, $T \geq i$ iff $A_{1}, A_{2}, \ldots, A_{i-1}$ all occur.

$$
\operatorname{Pr}(T \geq i)=
$$

$$
\begin{aligned}
& \operatorname{Pr}(T \geq i) \\
= & \operatorname{Pr}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right) \\
= & \operatorname{Pr}\left(A_{1}\right) \cdot \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \cdot \operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdot \ldots \\
& \quad \cdot \operatorname{Pr}\left(A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right)
\end{aligned}
$$

open addressing: unsuccessful search

$\operatorname{Pr}\left(A_{j} \mid A_{1} \cap \cdots \cap A_{j-1}\right)=$?
Intuition:

- number of elements we have not yet seen: $n-(j-1)$
- number of slots we have not yet seen: $m-(j-1)$

Math: for $1 \leq j \leq m$:

$$
\operatorname{Pr}\left(A_{j} \mid A_{1} \cap \cdots \cap A_{j-1}\right)=\frac{n-j+1}{m-j+1}
$$

Then for $1 \leq i \leq m$:

$$
\begin{array}{rlr}
\operatorname{Pr}(T \geq i) & =\frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \cdots \frac{n-i+2}{m-i+2} \\
& \leq\left(\frac{n}{m}\right)^{i-1} & \\
& =\alpha^{i-1} & \text { since } n<m
\end{array}
$$

open addressing: unsuccessful search

Now we can calculate the expected value of T, or the average-case complexity of unsuccessful search (k).

$$
\begin{array}{rlr}
E(T) & =\sum_{i=1}^{\infty} \operatorname{Pr}(T \geq i) & \text { stats flashback } \\
& =\sum_{i=1}^{m} \operatorname{Pr}(T \geq i)+\sum_{i=m+1}^{\infty} \operatorname{Pr}(T \geq i) & \\
& \leq \sum_{i=1}^{\infty} \alpha^{i-1}+0 & \text { previous slide } \\
& =\sum_{i=0}^{\infty} \alpha^{i} & \\
& =\frac{1}{1-\alpha} & \alpha<1
\end{array}
$$

open addressing: insert

To insert a new element:

- perform an unsuccessful search (for an available location)
- insert: $\mathcal{O}(1)$

Thus, insert (k, v) requires at most $\frac{1}{1-\alpha}$ probes on average.

open addressing: successful search

Let T be the number of probes performed in a successful search.
Idea: successful search(k) reproduces the same probing sequence as insert (k,v).

If k was the $(i+1)^{s t}$ key inserted into the table, then the expected number of probes made is at most

$$
\frac{1}{1-\frac{i}{m}}=\frac{m}{m-i}
$$

Then, averaging over all n keys in the table:

$$
E(T)=\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i}
$$

open addressing: successful search

$$
\begin{array}{rlr}
E(T) & =\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} \\
& =\frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} \\
& =\frac{1}{\alpha} \sum_{k=m-n+1}^{m} \frac{1}{k} \quad \text { approx by integrals } \quad \text { calculus } \\
& \leq \frac{1}{\alpha} \int_{k=(m-n+1)-1}^{m} \frac{1}{x} d x \\
& =\frac{1}{\alpha} \ln \frac{m}{m-n} \\
& =\frac{1}{\alpha} \ln \frac{1}{1-\alpha}
\end{array}
$$

open addressing: successful search

$$
E(T) \leq \frac{1}{\alpha} \ln \frac{1}{1-\alpha}
$$

This is pretty good!

- if the table is half full, the expected number of probes is <1.387
- if the table is 90% full, this number is <2.559

open addressing: delete

What about delete?

- with closed addressing: easy
- first do search then
- $\mathcal{O}(1)$ un-link
- with open addressing: two approaches
- find an existing key to fill the hole
- tricky for probing, impossible for double hashing
- introduce a special deactivated status for locations
- free: can insert here, can stop searching here
- deactivated: can insert here, cannot stop searching here
- occupied: stores a key
- over time slows down all operations
- delete is problematic under open addressing

