
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

introduction

Today we begin studying a different way to look at complexity of
algorithms.

So far we saw

• worst case analysis of individual operations

• amortised analysis over a sequence of operations

Today we add

• expected running time analysis

• need to review our probabilities!

2

quicksort: idea

A divide-and-conquer algorithm.

1. if |A| < 2: stop

2. pick an element x , called “pivot”

3. partition A into:
• L: array of elements ≤ x
• G : array of elements > x

(Θ(|A|) time; |A| − 1 comparisons against pivot)

4. recurse: sort L

5. recurse: sort G

6. concatenate sorted L, sorted G

We write L, G as new arrays to show the idea.
In reality, “partition” is done in-place in A, so L occupies the left
side, G occupies the right side, and there is no “concatenate” step.

3

quicksort: algorithm

quicksort(A, p, r):

0. if p < r:

1. q = partition(A, p, r)

2. quicksort(A, p, q-1)

3. quicksort(A, q+1, r)

partition(A, p, r):

0. x := A[r] // pivot

1. i := p-1

2. for j in p, ..., r-1:

3. if A[j] <= x:

4. i := i + 1

5. exchange A[i] with A[j]

6. exchange A[i+1] with A[r]

7. return i + 1

4

quicksort: example

Trace quicksort on the array

A = [2, 8, 7, 1, 3, 5, 6, 4]

5

quicksort: correctness

The loop invariants of partition:

• A[k] ≤ x for p ≤ k ≤ i

• A[k] > x for i + 1 ≤ k ≤ j − 1

• A[k] = x for k = r

Proof: exercise.

6

quicksort: complexity

• running time of partition is

• running time depends on partitioning
•

• worst case when:
•

• best case when:
•

• average case:
•

7

randomised quicksort: idea

• remove “bias” in the input that may cause too many
unbalanced partitions

• by selecting pivots at random

• we expect the split to be reasonably well balanced on average

• technique called random sampling

8

randomised quicksort: algorithm

r-quicksort(A, p, r):

0. if p < r:

1. q = r-partition(A, p, r)

2. r-quicksort(A, p, q-1)

3. r-quicksort(A, q+1, r)

r-partition(A, p, r):

0. exchange A[r] with A[random(p, r)]

1. x := A[r] // pivot is now random from A[p..r]

2. i := p-1

3. for j in p, ..., r-1:

4. if A[j] <= x:

5. i := i + 1

6. exchange A[i] with A[j]

7. exchange A[i+1] with A[r]

8. return i + 1
9

randomised quicksort: complexity

Idea:

• partition selects a pivot

• pivot never included in any future recursive calls

• at most calls to partition over entire execution of
quicksort

• partition is:

• focus on line 4 in for-loop

• can count number of times line 4 runs

• will give us bound on time spent in the for-loop over entire
execution of quicksort

Formally:

•
•
•

10

randomised quicksort: complexity

Notice:

• each pair of elements is compared at most once:

• elements are compared only to the pivot

• pivot is never used after call to partition

Let:

• elements of A: {z1, z2, ..., zn} where zi is the i th smallest
element of A

• Zij = {zi , zi+1, ..., zj} be set of elements between zi and zj
• Xij = I{zi is compared to zj} be indicator random variable

11

stats flashback: indicator variable

An indicator random variable X is

Xi =

{
1 if an event i occurs

0 if it does not

12

randomised quicksort: expected time

Total number of comparisons:

13

randomised quicksort: expected time

When is zi compared to zj?

In zi < . . . < x < . . . < zj ,

• if x becomes pivot first, zi is not compared to zj
(zi moved to left partition, zj moved to right partition)

• if zi becomes pivot first, zi is compared to zj

• if zj becomes pivot first, zi is compared to zj

14

randomised quicksort: expected time

Pr(zi is compared to zj) =

15

randomised quicksort: expected time

Total number of comparisons:

16

