CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

introduction

Today we begin studying a different way to look at complexity of algorithms.

So far we saw

- worst case analysis of individual operations
- amortised analysis over a sequence of operations

Today we add

- expected running time analysis
- need to review our probabilities!

quicksort: idea

A divide-and-conquer algorithm.

1. if $|A|<2$: stop
2. pick an element x, called "pivot"
3. partition A into:

- L: array of elements $\leq x$
- G : array of elements $>x$
$(\Theta(|A|)$ time; $|A|-1$ comparisons against pivot)

4. recurse: sort L
5. recurse: sort G
6. concatenate sorted L, sorted G

We write L, G as new arrays to show the idea.
In reality, "partition" is done in-place in A, so L occupies the left side, G occupies the right side, and there is no "concatenate" step.

quicksort: algorithm

quicksort(A, p, r):
0 . if p < r :

1. $\mathrm{q}=\operatorname{partition(A,~} \mathrm{p}, \mathrm{r})$
2. quicksort(A, p, q-1)
3. quicksort($\mathrm{A}, \mathrm{q}+1, \mathrm{r}$)
partition(A, p, r):
4. x :=A[r] // pivot
5. i := p-1
6. for j in $\mathrm{p}, \ldots, \mathrm{r}-1$:
7. if $A[j]<=x$:
8. i := i + 1
9. exchange A[i] with A[j]
10. exchange $A[i+1]$ with $A[r]$
11. return i + 1

quicksort: example

Trace quicksort on the array

$$
A=[2,8,7,1,3,5,6,4]
$$

quicksort: correctness

The loop invariants of partition:

- $A[k] \leq x$ for $p \leq k \leq i$
- $A[k]>x$ for $i+1 \leq k \leq j-1$
- $A[k]=x$ for $k=r$

Proof: exercise.

quicksort: complexity

- running time of partition is

$$
\Theta(n) \text { where } n=r-p+1
$$

- running time depends on partitioning
- balanced partition produces better time
- worst case when:
- $n-1$ elements in one partition and 1 element in the other
- best case when:
- $n / 2$ elements in one partition and $n / 2$ elements in the other
- average case:
- is much closer to best case than to the worst case!

randomised quicksort: idea

- remove "bias" in the input that may cause too many unbalanced partitions
- by selecting pivots at random
- we expect the split to be reasonably well balanced on average
- technique called random sampling

randomised quicksort: algorithm

r-quicksort(A, p, r):
0 . if $\mathrm{p}<\mathrm{r}$:

1. $\mathrm{q}=\mathrm{r}$-partition(A, $\mathrm{p}, \mathrm{r})$
2. r -quicksort($\mathrm{A}, \mathrm{p}, \mathrm{q}-1$)
3. r-quicksort($A, q+1, r)$
r-partition(A, p, r):
0 . exchange $\mathrm{A}[\mathrm{r}]$ with $\mathrm{A}[\mathrm{random}(\mathrm{p}, \mathrm{r})]$
4. x := A[r] // pivot is now random from A[p..r]
5. i := p-1
6. for j in $\mathrm{p}, \ldots, \mathrm{r}-1$:
7. if $A[j]<=x$:
8. i := i + 1
9. exchange A[i] with A[j]
10. exchange $A[i+1]$ with $A[r]$
11. return i + 1

randomised quicksort: complexity

Idea:

- partition selects a pivot
- pivot never included in any future recursive calls
- at most n calls to partition over entire execution of quicksort
- partition is: $\mathcal{O}(1)$ plus for-loop
- focus on line 4 in for-loop
- can count number of times line 4 runs
- will give us bound on time spent in the for-loop over entire execution of quicksort
Formally:
- quicksort is $\mathcal{O}(n+X)$ where
- n is the length of array A and
- X is the total number of comparisons on line 4 over entire execution

randomised quicksort: complexity

Notice:

- each pair of elements is compared at most once:
- elements are compared only to the pivot
- pivot is never used after call to partition

Let:

- elements of A : $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ where z_{i} is the $i^{\text {th }}$ smallest element of A
- $Z_{i j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$ be set of elements between z_{i} and z_{j}
- $X_{i j}=I\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$ be indicator random variable

stats flashback: indicator variable

An indicator random variable X is

$$
X_{i}= \begin{cases}1 & \text { if an event } i \text { occurs } \\ 0 & \text { if it does not }\end{cases}
$$

randomised quicksort: expected time

Total number of comparisons:

$$
\begin{aligned}
E(X) & =E\left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right) \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i j}\right) \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left(z_{i} \text { is compared to } z_{j}\right)
\end{aligned}
$$

randomised quicksort: expected time

When is z_{i} compared to z_{j} ?
$\ln z_{i}<\ldots<x<\ldots<z_{j}$,

- if x becomes pivot first, z_{i} is not compared to z_{j}
(z_{i} moved to left partition, z_{j} moved to right partition)
- if z_{i} becomes pivot first, z_{i} is compared to z_{j}
- if z_{j} becomes pivot first, z_{i} is compared to z_{j}

randomised quicksort: expected time

$\operatorname{Pr}\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$
$=\operatorname{Pr}\left(z_{i}\right.$ or z_{j} is the first pivot chosen from $\left.Z_{i j}\right)$
$=\operatorname{Pr}\left(z_{i}\right.$ is the first pivot chosen from $\left.Z_{i j}\right)$
$+\operatorname{Pr}\left(z_{j}\right.$ is the first pivot chosen from $\left.Z_{i j}\right)$
$=\frac{1}{j-i+1}+\frac{1}{j-i+1}$
$=\frac{2}{j-i+1}$

randomised quicksort: expected time

Total number of comparisons:

$$
\begin{aligned}
E(X) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left(z_{i} \text { is compared to } z_{j}\right) \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\
& <2 * \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k} \\
& <2 * \sum_{i=1}^{n-1} \ln n \\
& =2(n-1) \ln n \\
& \in \mathcal{O}(n \log n)
\end{aligned}
$$

