CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai

introduction

Today we begin studying a different way to look at complexity of
algorithms.

So far we saw
® worst case analysis of individual operations

® amortised analysis over a sequence of operations

Today we add
® expected running time analysis

® need to review our probabilities!

quicksort: idea

A divide-and-conquer algorithm.
1. if |A| < 2: stop

2. pick an element x, called “pivot”

3. partition A into:

® [: array of elements < x
® G: array of elements > x

(©(|A]) time; |A| — 1 comparisons against pivot)
4. recurse: sort L
5. recurse: sort G
6. concatenate sorted L, sorted G

We write L, G as new arrays to show the idea.
In reality, “partition” is done in-place in A, so L occupies the left
side, G occupies the right side, and there is no “concatenate” step.

quicksort: algorithm

quicksort(A, p, r):

0. if p < r:

1. q = partition(A, p, r)
2. quicksort(A, p, gq-1)
3. quicksort(A, g+1, r)

partition(A, p, r):

0. x := Alr] // pivot

1.1 :=p-1

2. for jinp, ..., r-1:

3. if A[3] <= x:

4. i=1i4+1

5 exchange A[i] with A[j]
6. exchange A[i+1] with A[r]
7. return i + 1

quicksort: example

Trace quicksort on the array

A=1[2,8,7,1,3,5,6,4]

quicksort: correctness

The loop invariants of partition:
o Akl < xforp<k<i
® Akl >xfori+1<k<j-—1
o Akl =xfor k=r

Proof: exercise.

quicksort: complexity
running time of partition is
©(n) where n=r—p+1

running time depends on partitioning
® balanced partition produces better time

worst case when:
® n — 1 elements in one partition and 1 element in the other

best case when:
® n/2 elements in one partition and n/2 elements in the other

average case:
® is much closer to best case than to the worst case!

randomised quicksort: idea

remove “bias” in the input that may cause too many
unbalanced partitions

by selecting pivots at random
we expect the split to be reasonably well balanced on average

technique called random sampling

randomised quicksort: algorithm

r-quicksort(A, p, 1):

0. if p < r:

1. q = r-partition(A, p, r)
2 r-quicksort(A, p, gq-1)
3. r-quicksort(A, g+1, r)

r-partition(A, p, 1):
0. exchange A[r] with A[random(p, r)]

1. x := Alr] // pivot is now random from A[p..r]
2.1 :=p-1
for j inp, ..., r-1:
if A[j] <= x:
i:=1+1

exchange A[i] with A[j]
exchange A[i+1] with A[r]
return i + 1

0 N O 01w

Idea:

randomised quicksort: complexity

partition selects a pivot

pivot never included in any future recursive calls

at most n calls to partition over entire execution of
quicksort

partition is: O(1) plus for-loop

focus on line 4 in for-loop

can count number of times line 4 runs

will give us bound on time spent in the for-loop over entire
execution of quicksort

Formally:

quicksort is O(n + X) where
n is the length of array A and
X is the total number of comparisons on line 4 over entire

execution
10

randomised quicksort: complexity

Notice:
® cach pair of elements is compared at most once:
® clements are compared only to the pivot
® pivot is never used after call to partition

Let:

® clements of A: {z1,2,..., z,} where z; is the i*h smallest
element of A

® Zj ={z,zit1, ..., zj} be set of elements between z; and z;

® Xjj = 1{z is compared to z;} be indicator random variable

11

stats flashback: indicator variable

An indicator random variable X is

B 1 if an event i/ occurs
' 0 if it does not

12

randomised quicksort:

Total number of comparisons:

expected time

13

randomised quicksort: expected time

When is z; compared to z;?

|nZ,'<...<X<...<Zj,

® if x becomes pivot first, z; is not compared to z;
(zi moved to left partition, z; moved to right partition)

® if z; becomes pivot first, z; is compared to z;

® if z; becomes pivot first, z; is compared to z;

14

randomised quicksort: expected time

Pr(z; is compared to z;)
= Pr(z; or z; is the first pivot chosen from Zj)
= Pr(z; is the first pivot chosen from Zj)

+ Pr(z; is the first pivot chosen from Zj;)

1 N 1
=41 j—i+1
2

TS

15

randomised quicksort: expected time

Total number of comparisons:

n—1 n

E(X) = Z Z Pr(z; is compared to z;)

i=1 j=i+1

n—1 n 2

n—1 n—i

2

n—1 n

<2*22%
i=1 k=1

n—1
< Z*Zlnn
i=1

=2(n—1)Inn
€ O(nlogn)

16

