How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?

How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in order that they are attached (during consolidate).

How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in order that they are attached (during consolidate).

How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in order that they are attached (during consolidate).

How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in order that they are attached (during consolidate).

How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?
- Let $y_{l}, y_{2}, \ldots, y_{k}$ be the children in order that they are attached (during consolidate).

How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in order that they are attached (during consolidate).
- And after we have cut as many nodes as possible?

How big is $d(n)$?

We need to find an upper bound on $d(n)$, the max degree of all root nodes.
Determine the minimum number of nodes possible in a tree with root of degree k.

- Consider any node x of degree k with minimum possible nodes. How do we get there?
- Let $y_{1}, y_{2}, \ldots, y_{k}$ be the children in order that they are attached (during consolidate).
- And after we have cut as many nodes as possible?

Observation. $\forall i, 1 \leq i \leq k: \quad d_{i} \geq i-2$

Bounding the number of nodes

Let's determine the minimum number of nodes $N(k)$ possible in a tree with root of degree k.

Observation.

Bounding the number of nodes

Let's determine the minimum number of nodes $N(k)$ possible in a tree with root of degree k.

Observation.

Bounding the number of nodes

Let's determine the minimum number of nodes $N(k)$ possible in a tree with root of degree k.

Observation.

Bounding the number of nodes

Let's determine the minimum number of nodes $N(k)$ possible in a tree with root of degree k.

Observation. $N(k)=N(k-1)+N(k-2)=F(k+2)$?
where $F(k+2)$ is the $k+2^{\text {nd }}$ Fibonacci number.

$\mathrm{N}(\mathrm{K})=\mathrm{F}(\mathrm{K}+2) ?$

Recall. $\forall i, 1 \leq i \leq k: \quad d_{i} \geq i-2$.

$\mathrm{N}(\mathrm{K})=\mathrm{F}(\mathrm{K}+2) ?$

Recall. $\forall i, 1 \leq i \leq k: \quad d_{i} \geq i-2$.

$$
\begin{aligned}
N(k) & =1+1+N(2-2)+N(3-2)+\cdots+N(k-2) \\
& =1+1+\sum_{j=0}^{k-2} N(j) \\
& = \\
& = \\
& =
\end{aligned}
$$

$\mathrm{N}(\mathrm{K})=\mathrm{F}(\mathrm{K}+2) ?$

Recall. $\forall i, 1 \leq i \leq k: \quad d_{i} \geq i-2$.

$$
\begin{aligned}
N(k) & =1+1+N(2-2)+N(3-2)+\cdots+N(k-2) \\
& =1+1+\sum_{j=0}^{k-2} N(j) \\
& =N(k-2)+1+1+\sum_{j=0}^{k-3} N(j) \\
& = \\
& =
\end{aligned}
$$

$\mathrm{N}(\mathrm{K})=\mathrm{F}(\mathrm{K}+2) ?$

Recall. $\forall i, 1 \leq i \leq k: \quad d_{i} \geq i-2$.

$$
\begin{aligned}
N(k) & =1+1+N(2-2)+N(3-2)+\cdots+N(k-2) \\
& =1+1+\sum_{j=0}^{k-2} N(j) \\
& =N(k-2)+1+1+\sum_{j=0}^{k-3} N(j) \\
& =N(k-2)+N(k-1) \\
& =
\end{aligned}
$$

$\mathrm{N}(\mathrm{K})=\mathrm{F}(\mathrm{K}+2) ?$

Recall. $\forall i, 1 \leq i \leq k: \quad d_{i} \geq i-2$.

$$
\begin{aligned}
N(k) & =1+1+N(2-2)+N(3-2)+\cdots+N(k-2) \\
& =1+1+\sum_{j=0}^{k-2} N(j) \\
& =N(k-2)+1+1+\sum_{j=0}^{k-3} N(j) \\
& =N(k-2)+N(k-1) \\
& =F(k)+F(k+1)=F(k+2)
\end{aligned}
$$

$O(d(n)) \in O(\log n)$

Lemma. For all integers $k \geq 0, F(k+2) \geq \varphi^{k}$ where $\varphi=\frac{(1+\sqrt{5})}{2}=1.61803 \ldots$.
Q. What is φ ?
A.

$O(d(n)) \in O(\log n)$

Lemma. For all integers $k \geq 0, F(k+2) \geq \varphi^{k}$ where $\varphi=\frac{(1+\sqrt{5})}{2}=1.61803 \ldots$.
Q. What is φ ?
A. Solution to $\varphi^{2}=\varphi+1$.

We can prove this by induction on k.
Q. Why is this useful?
A.

$O(d(n)) \in O(\log n)$

Lemma. For all integers $k \geq 0, F(k+2) \geq \varphi^{k}$ where $\varphi=\frac{(1+\sqrt{5})}{2}=1.61803 \ldots$.
Q. What is φ ?
A. Solution to $\varphi^{2}=\varphi+1$.

We can prove this by induction on k.
Q. Why is this useful?
A. Shows that Fibonacci numbers grow at least exponentially fast in k. Which means...

$O(d(n)) \in O(\log n)$

Lemma. For all integers $k \geq 0, F(k+2) \geq \varphi^{k}$ where $\varphi=\frac{(1+\sqrt{5})}{2}=1.61803 \ldots$.
Q. What is φ ?
A. Solution to $\varphi^{2}=\varphi+1$.

We can prove this by induction on k.
Q. Why is this useful?
A. Shows that Fibonacci numbers grow at least exponentially fast in k. Which means...

$$
N(k)=F(k+2) \geq \varphi^{k}
$$

\Rightarrow

$O(d(n)) \in O(\log n)$

Lemma. For all integers $k \geq 0, F(k+2) \geq \varphi^{k}$ where $\varphi=\frac{(1+\sqrt{5})}{2}=1.61803 \ldots$.
Q. What is φ ?
A. Solution to $\varphi^{2}=\varphi+1$.

We can prove this by induction on k.
Q. Why is this useful?
A. Shows that Fibonacci numbers grow at least exponentially fast in k. Which means...

$$
N(k)=F(k+2) \geq \varphi^{k}
$$

\Rightarrow number of nodes $n \geq N(k) \geq \varphi^{k}$.
\Rightarrow

$O(d(n)) \in O(\log n)$

Lemma. For all integers $k \geq 0, F(k+2) \geq \varphi^{k}$ where $\varphi=\frac{(1+\sqrt{5})}{2}=1.61803 \ldots$.
Q. What is φ ?
A. Solution to $\varphi^{2}=\varphi+1$.

We can prove this by induction on k.
Q. Why is this useful?
A. Shows that Fibonacci numbers grow at least exponentially fast in k. Which means...

$$
N(k)=F(k+2) \geq \varphi^{k}
$$

\Rightarrow number of nodes $n \geq N(k) \geq \varphi^{k}$.
$\Rightarrow \log _{\varphi} n \geq k$ where k is... $d(n)$.
Therefore,
Extract_Min amortized cost of $O(d(n))$ is really $O(\log n)$.

