
HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?
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BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

Observation.
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BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

Observation. N(k) = N(k−1) + N(k−2) = F(k + 2)?

where F(k + 2) is the k + 2nd Fibonacci number.
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N(K) = F(K+2)?

Recall. ∀i,1 ≤ i ≤ k : di ≥ i−2.

N(k) =

N(k) = 1 + 1 + N(2−2) + N(3−2) + · · ·+ N(k−2)

=

=

=

=
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O(d(n)) ∈ O(logn)

Lemma. For all integers k ≥ 0, F(k + 2) ≥ ϕk where ϕ =
(1+
√

5)
2 = 1.61803 . . ..

Q. What is ϕ?

A.

Solution to ϕ2 = ϕ+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k + 2) ≥ ϕk

⇒ number of nodes n ≥ N(k) ≥ ϕk.

⇒ logϕ n ≥ k where k is...d(n).

Therefore,

Extract_Min amortized cost of O(d(n)) is really O(logn).
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