How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

» Consider any node x of degree k with minimum possible nodes. How do
we get there?

10/14

How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

» Consider any node x of degree k with minimum possible nodes. How do
we get there?

> Lety;,y2,...,y be the children in order that they are attached (during

consolidate).

10/14

How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

> Consider any node x of degree k with minimum possible nodes. How do
we get there?

> Lety;.y2,....y be the children in order that they are attached (during
consolidate).

10/14

How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

» Consider any node x of degree k with minimum possible nodes. How do
we get there?

> Lety;,yos,...,y be the children in order that they are attached (during
consolidate).

10/14

How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

> Consider any node x of degree k with minimum possible nodes. How do
we get there?

> Lety;.y2,....y be the children in order that they are attached (during
consolidate).

10/14

How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

> Consider any node x of degree k with minimum possible nodes. How do
we get there?

> Lety;.y2,....y be the children in order that they are attached (during
consolidate).

10/14

How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

> Consider any node x of degree k with minimum possible nodes. How do
we get there?

> Lety;.y2,....y be the children in order that they are attached (during
consolidate).

> And after we have cut as many nodes as possible?

10/14

How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

» Consider any node x of degree k with minimum possible nodes. How do
we get there?

> Lety;.yo,....yx be the children in order that they are attached (during
consolidate).

> And after we have cut as many nodes as possible?

Observation. Vi, 1 <i<k: di>i-2

10/14

BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

Observation.

11/14

BOUNDING THE NUMBER OF NODES

Let’'s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

NO)=1 N(1)=2 N2)=3 N(@3)=5 N(4)=8

°0 I1 & 2
0 00 INF w
0 0 $0 0

Observation.

11/14

BOUNDING THE NUMBER OF NODES

Let’'s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

N(O)=1 N(1)=2 N@2)=3 N@3)=5 N(4)=8=5+3

YL e By
0 OOIMFM
0 0 600

Observation.

11/14

BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

N©O)=1 N(1)=2 N(2)=3 N@B)=5 N(4)=8=5+3

© L B B f
0 OOIMFW
0 0 ¢0w0

Observation. N(k) = N(k—-1)+N(k—-2) = F(k+2)?
where F(k+2) is the k + 2" Fibonacci number.

11/14

N(K) = F(K+2)?

Recall. Vi,1 <i<k: d;>i-2.

1

1 N(2—-2) N3 - N(k —
N = (2-2) N3-2) (k—2)

Nk)y=1+1+NQ2-2)+N(B-2)+---+N(k-2)

12/14

N(K) = F(K+2)?
Recall. Vi,1 <i<k: d;>i-2.

1

1 N(2-2) N(3— N(k —
N = (2-2) N3 -2) (k-2)

NGK)=1+1+NQ2=2)+ N3 =2)+--+N(k-2)

k-2
1+1+ZN(}')

7=0

12/14

N(K) = F(K+2)?

Recall. Vi, 1 <i<k: d;>i-2.

1

1 N2-2)NB-2 N(k -2
NG = (2-2) NB-2) (k-2)

Nk)=1+1+NQ2-2)+N(B-2)+---+N(k-2)

k-2
=1+1+) NG)
j=0
k-3
=N(k—2)+1+1+ZN(j)
Jj=0

12/14

N(K) = F(K+2)?

Recall. Vi, 1 <i<k: d;>i-2.

1

1 N2-2)NB-2 N(k -2
NG = (2-2) NB-2) (k-2)

Nk)=1+1+NQ2-2)+N(B-2)+---+N(k-2)

k-2
=1+1+) NG)
j=0
k-3
=N(k—2)+1+1+ZN(j)
Jj=0
=N(k-2)+N(k-1)

12/14

N(K) = F(K+2)?

Recall. Vi, 1 <i<k: d;>i-2.

1

1 N(2-2) N(8-2 N(k—-2
N - (2-2) N3 -2) (k-2)

NGK)=1+1+NQ2=2)+ N3 =2)+--+N(k-2)

k-2
=1+1+) NG)
=0
k-3
=N(k—2)+1+1+ZN(j)

=0
=Nk-2)+Nk-1)
=F()+Fk+1)=F(k+2)

12/14

0O(d(n)) € O(logn)
Lemma. For all integers k > 0, F(k+2) > ¢ where ¢ = “%‘5) =1.61803....

Q. What is ¢?
A.

13/14

0O(d(n)) € O(logn)

Lemma. For all integers k > 0, F(k+2) > ¢ where ¢ = “%‘5) =1.61803....

Q. What is ¢?

A. Solution to ¢? = o+ 1.

We can prove this by induction on k.
Q. Why is this useful?

A.

13/14

0O(d(n)) € O(logn)

Lemma. For all integers k > 0, F(k+2) > ¢ where ¢ = “%_‘E) =1.61803....

Q. What is ¢?

A. Solution to ¢? = o+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...

13/14

0O(d(n)) € O(logn)

Lemma. For all integers k > 0, F(k+2) > ¢* where ¢ = “%_‘E) =1.61803....
Q. What is ¢?

A. Solution to ¢? = o+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k+2) > ¢

13/14

0O(d(n)) € O(logn)

Lemma. For all integers k > 0, F(k+2) > ¢ where ¢ = “%_‘E) =1.61803....
Q. What is ¢?

A. Solution to ¢? = o+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k+2) > ¢

= number of nodes n > N(k) > ¢.

=

13/14

0O(d(n)) € O(logn)

Lemma. For all integers k > 0, F(k+2) > ¢ where ¢ = “%‘5) =1.61803....

Q. What is ¢?

A. Solution to ¢? = o+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k+2) > ¢
= number of nodes 1 > N(k) > ¢F.
= log,n>k where k is...d(n).
Therefore,
Extract_Min amortized cost of O(d(n)) is really O(logn).

13/14

