
HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

10 / 14



HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

10 / 14



HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

10 / 14



HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

10 / 14



HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

10 / 14



HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

10 / 14



HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

10 / 14



HOW BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

I Consider any node x of degree k with minimum possible nodes. How do
we get there?

I Let y1,y2, . . . ,yk be the children in order that they are attached (during
consolidate).

I And after we have cut as many nodes as possible?

Observation. ∀i,1 ≤ i ≤ k : di ≥ i−2

10 / 14



BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

Observation.

11 / 14



BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

Observation.

11 / 14



BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

Observation.

11 / 14



BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

Observation. N(k) = N(k−1) + N(k−2) = F(k + 2)?

where F(k + 2) is the k + 2nd Fibonacci number.

11 / 14



N(K) = F(K+2)?

Recall. ∀i,1 ≤ i ≤ k : di ≥ i−2.

N(k) =

N(k) = 1 + 1 + N(2−2) + N(3−2) + · · ·+ N(k−2)

=

=

=

=

12 / 14



N(K) = F(K+2)?
Recall. ∀i,1 ≤ i ≤ k : di ≥ i−2.

N(k) =

N(k) = 1 + 1 + N(2−2) + N(3−2) + · · ·+ N(k−2)

= 1 + 1 +

k−2∑
j=0

N(j)

=

=

=

12 / 14



N(K) = F(K+2)?
Recall. ∀i,1 ≤ i ≤ k : di ≥ i−2.

N(k) =

N(k) = 1 + 1 + N(2−2) + N(3−2) + · · ·+ N(k−2)

= 1 + 1 +

k−2∑
j=0

N(j)

= N(k−2) + 1 + 1 +

k−3∑
j=0

N(j)

=

=

12 / 14



N(K) = F(K+2)?
Recall. ∀i,1 ≤ i ≤ k : di ≥ i−2.

N(k) =

N(k) = 1 + 1 + N(2−2) + N(3−2) + · · ·+ N(k−2)

= 1 + 1 +

k−2∑
j=0

N(j)

= N(k−2) + 1 + 1 +

k−3∑
j=0

N(j)

= N(k−2) + N(k−1)

=

12 / 14



N(K) = F(K+2)?
Recall. ∀i,1 ≤ i ≤ k : di ≥ i−2.

N(k) =

N(k) = 1 + 1 + N(2−2) + N(3−2) + · · ·+ N(k−2)

= 1 + 1 +

k−2∑
j=0

N(j)

= N(k−2) + 1 + 1 +

k−3∑
j=0

N(j)

= N(k−2) + N(k−1)

= F(k) + F(k + 1) = F(k + 2)

12 / 14



O(d(n)) ∈ O(logn)

Lemma. For all integers k ≥ 0, F(k + 2) ≥ ϕk where ϕ =
(1+
√

5)
2 = 1.61803 . . ..

Q. What is ϕ?

A.

Solution to ϕ2 = ϕ+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k + 2) ≥ ϕk

⇒ number of nodes n ≥ N(k) ≥ ϕk.

⇒ logϕ n ≥ k where k is...d(n).

Therefore,

Extract_Min amortized cost of O(d(n)) is really O(logn).

13 / 14



O(d(n)) ∈ O(logn)

Lemma. For all integers k ≥ 0, F(k + 2) ≥ ϕk where ϕ =
(1+
√

5)
2 = 1.61803 . . ..

Q. What is ϕ?

A. Solution to ϕ2 = ϕ+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A.

Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k + 2) ≥ ϕk

⇒ number of nodes n ≥ N(k) ≥ ϕk.

⇒ logϕ n ≥ k where k is...d(n).

Therefore,

Extract_Min amortized cost of O(d(n)) is really O(logn).

13 / 14



O(d(n)) ∈ O(logn)

Lemma. For all integers k ≥ 0, F(k + 2) ≥ ϕk where ϕ =
(1+
√

5)
2 = 1.61803 . . ..

Q. What is ϕ?

A. Solution to ϕ2 = ϕ+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...

N(k) = F(k + 2) ≥ ϕk

⇒ number of nodes n ≥ N(k) ≥ ϕk.

⇒ logϕ n ≥ k where k is...d(n).

Therefore,

Extract_Min amortized cost of O(d(n)) is really O(logn).

13 / 14



O(d(n)) ∈ O(logn)

Lemma. For all integers k ≥ 0, F(k + 2) ≥ ϕk where ϕ =
(1+
√

5)
2 = 1.61803 . . ..

Q. What is ϕ?

A. Solution to ϕ2 = ϕ+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k + 2) ≥ ϕk

⇒

number of nodes n ≥ N(k) ≥ ϕk.

⇒ logϕ n ≥ k where k is...d(n).

Therefore,

Extract_Min amortized cost of O(d(n)) is really O(logn).

13 / 14



O(d(n)) ∈ O(logn)

Lemma. For all integers k ≥ 0, F(k + 2) ≥ ϕk where ϕ =
(1+
√

5)
2 = 1.61803 . . ..

Q. What is ϕ?

A. Solution to ϕ2 = ϕ+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k + 2) ≥ ϕk

⇒ number of nodes n ≥ N(k) ≥ ϕk.

⇒

logϕ n ≥ k where k is...d(n).

Therefore,

Extract_Min amortized cost of O(d(n)) is really O(logn).

13 / 14



O(d(n)) ∈ O(logn)

Lemma. For all integers k ≥ 0, F(k + 2) ≥ ϕk where ϕ =
(1+
√

5)
2 = 1.61803 . . ..

Q. What is ϕ?

A. Solution to ϕ2 = ϕ+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k + 2) ≥ ϕk

⇒ number of nodes n ≥ N(k) ≥ ϕk.

⇒ logϕ n ≥ k where k is...d(n).

Therefore,

Extract_Min amortized cost of O(d(n)) is really O(logn).

13 / 14


