How BIG IS d(n)?

We need to find an upper bound on d(n), the max degree of all root nodes.

Determine the minimum number of nodes possible in a tree with
root of degree k.

» Consider any node x of degree k with minimum possible nodes. How do
we get there?
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We need to find an upper bound on d(n), the max degree of all root nodes.
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consolidate).
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10/14



BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.
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BOUNDING THE NUMBER OF NODES

Let’s determine the minimum number of nodes N(k) possible in a tree with
root of degree k.

N©O)=1 N(1)=2 N(2)=3 N@B)=5 N(4)=8=5+3
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Observation. N(k) = N(k—-1)+N(k—-2) = F(k+2)?
where F(k+2) is the k + 2" Fibonacci number.
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N(K) = F(K+2)?

Recall. Vi,1 <i<k: d;>i-2.
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0O(d(n)) € O(logn)
Lemma. For all integers k > 0, F(k+2) > ¢ where ¢ = “%‘5) =1.61803....

Q. What is ¢?
A.
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Lemma. For all integers k > 0, F(k+2) > ¢ where ¢ = “%‘5) =1.61803....

Q. What is ¢?

A. Solution to ¢? = o+ 1.

We can prove this by induction on k.

Q. Why is this useful?

A. Shows that Fibonacci numbers grow at least exponentially fast in k.

Which means...
N(k) = F(k+2) > ¢
= number of nodes 1 > N(k) > ¢F.
= log,n>k where k is...d(n).
Therefore,
Extract_Min amortized cost of O(d(n)) is really O(logn).
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