
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

mergeable heaps

Recall the heap data structure:

• insert(j, p): insert job j with priority p

• max() or min(): return job with max/min priority

• extract-max() or extract-min(): remove and return job
with max/min priority

• increase-priority(j, p′): increase priority of job j to p′

(optional)

Does not support:

• union(H1, H2): merge / union two heaps H1 and H2

2

mergeable heaps

Recall the heap data structure:

• insert(j, p): insert job j with priority p

• max() or min(): return job with max/min priority

• extract-max() or extract-min(): remove and return job
with max/min priority

• increase-priority(j, p′): increase priority of job j to p′

(optional)

Does not support:

• union(H1, H2): merge / union two heaps H1 and H2

2

Fibonacci (min-)heap

• a forest of (min-)heaps:
• parent priority ≤ child priority
• siblings in circular doubly-linked list; parent points to one

arbitrary child

• roots in circular doubly-linked list

• pointer to minimum-priority root

23 7 3

18

39

52 38

40

17

30

24

26

35

46

3

binary heap vs Fibonacci heap

binary heap Fibonacci heap
worst-case amortised

insert Θ(log n) Θ(1)
extract-min Θ(log n) O(log n)
decrease-priority Θ(log n) Θ(1)
union Θ(n) Θ(1)

If Prim’s algorithm uses a Fibonacci heap:

• if n = |V | and m = |E |, then we have

• n calls of extract-min:

• and up to m calls of decrease-priority:

for a total of:

4

binary heap vs Fibonacci heap

binary heap Fibonacci heap
worst-case amortised

insert Θ(log n) Θ(1)
extract-min Θ(log n) O(log n)
decrease-priority Θ(log n) Θ(1)
union Θ(n) Θ(1)

If Prim’s algorithm uses a Fibonacci heap:

• if n = |V | and m = |E |, then we have

• n calls of extract-min:

• and up to m calls of decrease-priority:

for a total of:

4

Fibonacci heap: fields

Each node has:

• key : priority

• left, right: for circular list of siblings

• parent: pointer to parent

• child : pointer to one child

• degree: number of children

• marked : boolean, important during decrease-priority

The heap has:

• root list: a circular doubly-linked list of roots of the heaps

• min: pointer to root node with minimum key

5

Fibonacci heap: insert

insert(H, k):

0. new_root := new node(key=k, marked=false)

1. add new_node to H.root_list

2. if k < H.min.key:

3. H.min = new_root

23 7 2 3

18

39

52 38

40

17

30

24

26

35

46

6

Fibonacci heap: insert

insert(H, k):

0. new_root := new node(key=k, marked=false)

1. add new_node to H.root_list

2. if k < H.min.key:

3. H.min = new_root

23 7 2 3

18

39

52 38

40

17

30

24

26

35

46

6

Fibonacci heap: union

union(H, H_1, H_2):

0. H.root_list := H_1.root_list + H_2.root_list

1. if H_1.min.key <= H_2.min.key:

2. H.min := H_1.min

3. else:

4. H.min := H_2.min

7

23

21 3

18

39

52

17

30

24

26

35

46

7

Fibonacci heap: union

union(H, H_1, H_2):

0. H.root_list := H_1.root_list + H_2.root_list

1. if H_1.min.key <= H_2.min.key:

2. H.min := H_1.min

3. else:

4. H.min := H_2.min

7

23

21 3

18

39

52

17

30

24

26

35

46

7

Fibonacci heap: insert and union

• Complexity of insert:

• Complexity of union:

• “Real work” is in extract-min and decrease-priority

8

Fibonacci heap: extract-min

extract-min(H):

0. remove H.min from H.root_list

1. add each child of H.min to H.root_list

2. H.min := any former child of H.min // can be wrong!

3. consolidate(H) // real work here

23 7 21 3

18

39

52 38

40

17

30

24

26

35

46

9

Fibonacci heap: extract-min

extract-min(H):

0. remove H.min from H.root_list

1. add each child of H.min to H.root_list

2. H.min := any former child of H.min // can be wrong!

3. consolidate(H) // real work here

23 7 21 3

18

39

52 38

40

17

30

24

26

35

46

9

consolidate: idea

Want:

• end with root list with nodes of unique degree

Idea:
• repeat until all nodes in root list have unique degree:

• walk through root list
• remember degree of each node so far
• if see a node x with degree same as that of already seen y ,
• u := x or y , whoever’s key is larger
• v := x or y , whoever’s key is smaller
• add u to children of v
• remove u from root list

• update min

How to remember degrees of nodes?

• maintain array A of pointers

• A[i] is root node with degree i

10

consolidate: idea

Want:

• end with root list with nodes of unique degree

Idea:
• repeat until all nodes in root list have unique degree:

• walk through root list
• remember degree of each node so far
• if see a node x with degree same as that of already seen y ,
• u := x or y , whoever’s key is larger
• v := x or y , whoever’s key is smaller
• add u to children of v
• remove u from root list

• update min

How to remember degrees of nodes?

• maintain array A of pointers

• A[i] is root node with degree i

10

consolidate: example

23 7 21 18

39

52 38

40

17

30

24

26

35

4638

40

24

26

35

46

52 23

52

21

11

consolidate: algorithm

consolidate(H):

0. for each node n in H.root_list:

1. x := n

2. while A[x.degree] != null:

3. y := A[x.degree]

4. A[x.degree] := null

5. if x.key > y.key:

6. x, y := y, x

7. remove y from H.root_list

8. make y child of x // x.degree increases

9. y.marked := false // used later

10. A[x.degree] := x

11. update H.min

12

decrease-priority: idea

• this is where we use the marked field

• marked is true if this node lost a child since being removed
from root list

• cut child from parent: move child to root list and unmark it
• cascading cuts from some child node:

• keep going up to root
• if see an unmarked child, mark it and stop
• if see a marked child, cut it and keep going

13

decrease-priority: example

decrease-priority(x , 46). y .key > x .key , will promote x .

11

35 29

49 37

42 48

y

63 46

x

14

decrease-priority: algorithm

decrease-priority(H, x, k):

0. if k >= x.key: return

1. x.key := k

2. y := x.parent

3. if y != null and y.key > x.key:

4. cut(H, x, y)

5. while y.parent != null:

6. if not y.marked:

7. y.marked := true

8. break

9. else:

10. cut(H, y, y.parent)

11. y := y.parent

12. if x.key < H.min.key:

13. H.min := x

15

decrease-priority: cut

cut(H, x, y):

0. remove x from children of y

1. add x to H.root_list

2. x.marked := false

3. if x.key < H.min.key:

4. H.min := x

16

complexity of Fibonacci heap operations

• Look at actual worst case time first

• Then define our potential function

• Then find amortised complexity of operations

17

complexity: actual costs

• define
• t(H): number of trees in heap (nodes in the root list)
• d(H): degree of node with maximum degree in heap

• insert(j, p):

• min():
• extract-min():

• remove node from root list:

• insert children into root list:

• consolidate(H):
• how many times can a root become a child of another root?

• ∴ max number of merges:

• find new min:

• total:

18

complexity: actual costs

• define
• t(H): number of trees in heap (nodes in the root list)
• d(H): degree of node with maximum degree in heap
• m(H): number of marked nodes in heap

• decrease-priority(n, p):
• set new priority of n:
• if heap not ordered, cut n:
• if cascading cuts:
• only cut marked nodes during cascading cuts:
• so decrease-priority is

19

complexity: observations

Observations AKA potential function magic:

• extract-min moves nodes from root list down

• decrease-priority cuts nodes / moves them up to root list

• extract-min:

• decrease-priority:

• define potential function:

Φ(H) = t(H) + 2 ∗m(H)

• Initially:

20

complexity: insert

• Potential function: Φ(H) = t(H) + 2 ∗m(H)

• How does insert change potential:

• Then amortised complexity is:

21

complexity: decrease-priority

• Potential function: Φ(H) = t(H) + 2 ∗m(H)

• How does decrease-priority change potential?

• if we make x cuts

• for each cut, a node added to root list:

• every cut unmarks a marked node

• x − 1 or x nodes become unmarked

• at most 1 node becomes marked

• then:

22

complexity: decrease-priority

Have:

• Φ(H) = t(H) + 2 ∗m(H)

• t(Hi) = t(Hi−1) + x

• m(Hi) ≤ m(Hi−1)− x + 2

Then:

Amortised cost:

23

complexity: extract-min

• Potential function: Φ(H) = t(H) + 2 ∗m(H)

• How does extract-min change potential?
• no nodes become marked, some may become unmarked

• m(Hi) ≤ m(Hi−1)

• after extract-min (after consolidate), all nodes in root
list have different degree

• then:

Then

24

complexity: extract-min

• recall actual time: t(Hi−1) + d(Hi)

• change in ∆(Φ) ≤ d(Hi) + 1− t(Hi−1)

• Then

25

complexity: extract-min

• ai ∈ O(d(Hi))

• Last piece of the puzzle: a bound on d(H)

• What is the maximum degree of a root node in a heap of size
n?

• What is the minimum number of nodes N(d) in a heap with
root nodes of degree d?

• ...

• In tutorial show N(d) = fib(d + 2) — hence the name
“Fibonacci heap”!
∴ n ≥ ϕd

∴ d ≤ logϕ n

26

Fibonacci heap: complexity

• insert: amortised O(1)

• extract-min: amortised O(log n)

• decrease-priority: amortised cost O(1)

27

