CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹based on notes by Anna Bretscher and Albert Lai

mergeable heaps

Recall the heap data structure:

- insert(j, p): insert job j with priority p
- max() or min(): return job with max/min priority
- extract-max() or extract-min(): remove and return job with max/min priority
- increase-priority(j, p'): increase priority of job j to p' (optional)

mergeable heaps

Recall the heap data structure:

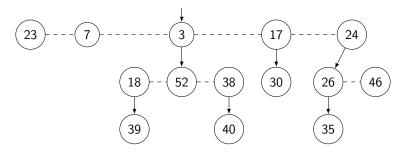
- insert(j, p): insert job j with priority p
- max() or min(): return job with max/min priority
- extract-max() or extract-min(): remove and return job with max/min priority
- increase-priority(j, p'): increase priority of job j to p' (optional)

Does not support:

• union(H_1 , H_2): merge / union two heaps H_1 and H_2

Fibonacci (min-)heap

- a forest of (min-)heaps:
 - parent priority ≤ child priority
 - siblings in circular doubly-linked list; parent points to one arbitrary child
- roots in circular doubly-linked list
- pointer to minimum-priority root



binary heap vs Fibonacci heap

	binary heap	Fibonacci heap
	worst-case	amortised
insert	$\Theta(\log n)$	$\Theta(1)$
extract-min	$\Theta(\log n)$	$O(\log n)$
decrease-priority	$\Theta(\log n)$	$\Theta(1)$
union	$\Theta(n)$	$\Theta(1)$

binary heap vs Fibonacci heap

	binary heap	Fibonacci heap
	worst-case	amortised
insert	$\Theta(\log n)$	$\Theta(1)$
extract-min	$\Theta(\log n)$	$O(\log n)$
decrease-priority	$\Theta(\log n)$	$\Theta(1)$
union	$\Theta(n)$	$\Theta(1)$

If Prim's algorithm uses a Fibonacci heap:

- if n = |V| and m = |E|, then we have
- *n* calls of extract-min:
- and up to *m* calls of decrease-priority:

for a total of:

Fibonacci heap: fields

Each node has:

- *key*: priority
- *left*, *right*: for circular list of siblings
- parent: pointer to parent
- child: pointer to one child
- degree: number of children
- marked: boolean, important during decrease-priority

The heap has:

- root_list: a circular doubly-linked list of roots of the heaps
- min: pointer to root node with minimum key

Fibonacci heap: insert

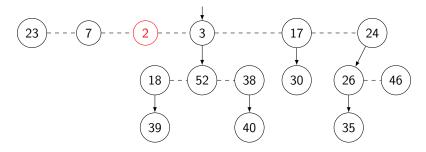
insert(H, k):

- 0. new_root := new node(key=k, marked=false)
- 1. add new_node to H.root_list
- 2. if k < H.min.key:</pre>
- 3. H.min = new_root

Fibonacci heap: insert

insert(H, k):
0. new_root := new node(key=k, marked=false)
1. add new_node to H.root_list
2. if k < H.min.key:</pre>

3. H.min = new_root

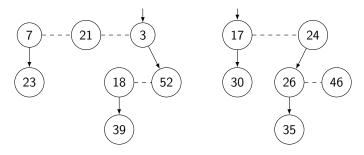


Fibonacci heap: union

```
union(H, H_1, H_2):
0. H.root_list := H_1.root_list + H_2.root_list
1. if H_1.min.key <= H_2.min.key:
2. H.min := H_1.min
3. else:
4. H.min := H_2.min
```

Fibonacci heap: union

```
union(H, H_1, H_2):
0. H.root_list := H_1.root_list + H_2.root_list
1. if H_1.min.key <= H_2.min.key:
2. H.min := H_1.min
3. else:
4. H.min := H_2.min
```



Fibonacci heap: insert and union

- Complexity of insert:
- Complexity of union:
- "Real work" is in extract-min and decrease-priority

Fibonacci heap: extract-min

extract-min(H):

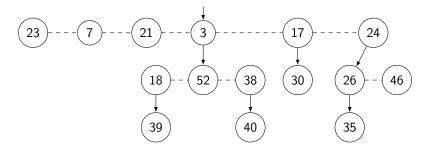
- 0. remove H.min from H.root_list
- 1. add each child of H.min to H.root_list
- 2. H.min := any former child of H.min // can be wrong!
- 3. consolidate(H)

// real work here

Fibonacci heap: extract-min

extract-min(H):

- 0. remove H.min from H.root_list
- 1. add each child of H.min to H.root_list
- 2. H.min := any former child of H.min // can be wrong!
- 3. consolidate(H) // real work here



consolidate: idea

Want:

• end with root list with nodes of <u>unique</u> degree

Idea:

- repeat until all nodes in root list have unique degree:
 - walk through root list
 - remember degree of each node so far
 - if see a node x with degree same as that of already seen y,
 - u := x or y, whoever's key is larger
 - v := x or y, whoever's key is smaller
 - add u to children of v
 - remove u from root list
- update *min*

How to remember degrees of nodes?

consolidate: idea

Want:

end with root list with nodes of <u>unique</u> degree

Idea:

- repeat until all nodes in root list have unique degree:
 - walk through root list
 - remember degree of each node so far
 - if see a node x with degree same as that of already seen y,
 - u := x or y, whoever's key is larger
 - v := x or y, whoever's key is smaller
 - add u to children of v
 - remove u from root list
- update *min*

How to remember degrees of nodes?

- maintain array A of pointers
- *A*[*i*] is root node with degree *i*

consolidate: example

consolidate: algorithm

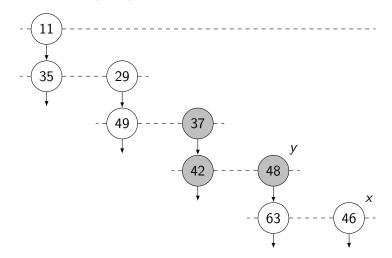
```
consolidate(H):
0. for each node n in H.root_list:
1. x := n
2. while A[x.degree] != null:
3.
       y := A[x.degree]
4.
      A[x.degree] := null
5. if x.key > y.key:
6.
         x, y := y, x
7. remove y from H.root_list
8.
       make y child of x // x.degree increases
9.
       y.marked := false // used later
10. A[x.degree] := x
11. update H.min
```

decrease-priority: idea

- this is where we use the marked field
- marked is *true* if this node lost a child since being removed from root list
- cut child from parent: move child to root list and unmark it
- <u>cascading cuts</u> from some child node:
 - keep going up to root
 - if see an unmarked child, mark it and stop
 - if see a marked child, cut it and keep going

decrease-priority: example

decrease-priority(x, 46). y. key > x. key, will promote x.



decrease-priority: algorithm

```
decrease-priority(H, x, k):
0. if k \ge x.key: return
1. x.key := k
2. y := x.parent
3. if y != null and y.key > x.key:
4. cut(H, x, y)
5. while y.parent != null:
6. if not y.marked:
7. y.marked := true
8. break
9. else:
10. cut(H, y, y.parent)
11. y := y.parent
12. if x.key < H.min.key:
13. H.min := x
```

decrease-priority: cut

```
cut(H, x, y):
0. remove x from children of y
1. add x to H.root_list
2. x.marked := false
3. if x.key < H.min.key:
4. H.min := x
```

complexity of Fibonacci heap operations

- Look at actual worst case time first
- Then define our potential function
- Then find amortised complexity of operations

complexity: actual costs

- define
 - t(H): number of trees in heap (nodes in the root list)
 - d(H): degree of node with maximum degree in heap
- insert(j, p):
- min():
- extract-min():
 - remove node from root list:
 - insert children into root list:
 - consolidate(H):
 - how many times can a root become a child of another root?
 - .:. max number of merges:
 - find new min:
 - total:

complexity: actual costs

• define

- t(H): number of trees in heap (nodes in the root list)
- d(H): degree of node with maximum degree in heap
- m(H): number of marked nodes in heap
- decrease-priority(n, p):
 - set new priority of n:
 - if heap not ordered, cut n:
 - if cascading cuts:
 - only cut marked nodes during cascading cuts:
 - so decrease-priority is

complexity: observations

Observations AKA potential function magic:

- extract-min moves nodes from root list down
- decrease-priority cuts nodes / moves them up to root list
- extract-min:
- decrease-priority:
- define potential function:

$$\Phi(H) = t(H) + 2 * m(H)$$

• Initially:

complexity: insert

- Potential function: $\Phi(H) = t(H) + 2 * m(H)$
- How does insert change potential:

• Then amortised complexity is:

complexity: decrease-priority

- Potential function: $\Phi(H) = t(H) + 2 * m(H)$
- How does decrease-priority change potential?
- if we make x cuts
- for each cut, a node added to root list:
- every cut unmarks a marked node
- *x* 1 or *x* nodes become unmarked
- at most 1 node becomes marked
- then:

complexity: decrease-priority

Have:

• $\Phi(H) = t(H) + 2 * m(H)$

•
$$t(H_i) = t(H_{i-1}) + x$$

•
$$m(H_i) \le m(H_{i-1}) - x + 2$$

Then:

Amortised cost:

complexity: extract-min

- Potential function: $\Phi(H) = t(H) + 2 * m(H)$
- How does extract-min change potential?
- no nodes become marked, some may become unmarked

• $m(H_i) \leq m(H_{i-1})$

- after extract-min (after consolidate), all nodes in root list have different degree
- then:

Then

complexity: extract-min

- recall actual time: $t(H_{i-1}) + d(H_i)$
- change in $\Delta(\Phi) \leq d(H_i) + 1 t(H_{i-1})$
- Then

complexity: extract-min

- $a_i \in \mathcal{O}(d(H_i))$
- Last piece of the puzzle: a bound on d(H)
- What is the maximum degree of a root node in a heap of size *n*?
- What is the minimum number of nodes N(d) in a heap with root nodes of degree d?

•

 In tutorial show N(d) = fib(d + 2) — hence the name "Fibonacci heap"!
 ∴ n ≥ φ^d

$$\therefore d \leq \log_{\phi} n$$

Fibonacci heap: complexity

- insert: amortised $\mathcal{O}(1)$
- extract-min: amortised $\mathcal{O}(\log n)$
- decrease-priority: amortised cost $\mathcal{O}(1)$