Binary Counter Increment

Put a k-bit number in an array C of k bits. LSB at $C[0]$. Initially all 0's.
increment():
$i:=0$
while $i<C$. length and $C[i]=1$:
$C[i]:=0$
$i:=i+1$
if $i<C$.length:

$$
C[i]:=1
$$

(For this example: modifying a bit takes $\Theta(1)$ time.)
Up to k bits could be already 1 . Increment takes $\Theta(k)$ time worst case. What about a sequence of m increments?

Binary Increment: Aggregate Method

- $C[0]$ is modified m times
- $C[1]$ is modified $\lfloor m / 2\rfloor$ times
- $C[2]$ is modified $\lfloor m / 4\rfloor$ times
- $C[i]$ is modified $\left\lfloor\mathrm{m} / 2^{i}\right\rfloor$ times

Total number of modifications:

$$
\begin{aligned}
\sum_{i=0}^{k-1}\left\lfloor\frac{m}{2^{i}}\right\rfloor & <\sum_{i=0}^{\infty} \frac{m}{2^{i}} \\
& =2 \cdot m
\end{aligned}
$$

m incrememts take $O(m)$ total time. Amortized time $O(1)$.

Binary Increment: Accounting Method

Each increment receives \$2. Prove this invariant: $\$ 1$ savings is attached to each bit storing 1.

Initially: $\$ 0$ savings, no bit stores 1.
Increment: If each bit storing 1 has $\$ 1$ saved before:

- increment receives \$2
- change some bits from 1 to 0 : spend their attached dollars (does not use the received \$2)
- may change a bit from 0 to 1 : spend $\$ 1$, save $\$ 1$

Then each bit storing 1 has $\$ 1$ saved after.
Savings \geq how many bits store 1 's ≥ 0.
Amortized time $O(2)$, i.e., $O(1)$.

Binary Increment: Potential Method

Choose $\Phi_{i}=$ number of bits storing 1's after i increments.
Check: $\Phi_{m} \geq \Phi_{0}$ because $\Phi_{0}=0$.
Therefore can use: amortized $=$ actual $+\Phi_{i}-\Phi_{i-1}$.
At each increment:

- Say, t bits are changed from 1 to 0 .
- In addition, may change 1 bit from 0 to 1 .
- actual time $\leq t+1$, we are changing t or $t+1$ bits
- $\Phi_{i}-\Phi_{i-1} \leq-t+1$, we lost t 's and may gain back a 1

$$
\begin{aligned}
\text { amortized time } & =(\text { actual time })+\Phi_{i}-\Phi_{i-1} \\
& \leq(t+1)+(-t+1) \\
& =2
\end{aligned}
$$

Amortized time $O(2)$, i.e., $O(1)$.

