Binary Counter Increment
Put a k-bit number in an array C of & bits. LSB at C[0].

Initially all O’s.
increment():
i:=0
while i < C.length and C[i] = 1:
Cli]:=0
i=i+1
if i < C.length:
Cli]:=1

(For this example: modifying a bit takes ®(1) time.)

Up to k bits could be already 1. Increment takes ®(k) time worst
case. What about a sequence of m increments?

1/4

Binary Increment: Aggregate Method

> ([0] is modified m times

» (C[1] is modified [m/2] times
» ([2] is modified [m/4] times
» (C[i] is modified [m/2!] times

Total number of modifications:
> m
5 < 25
i=0
= 2m

=

-1

I}
(=)

i

m incrememts take O(m) total time. Amortized time O(1).

2/4

Binary Increment: Accounting Method

Each increment receives $2. Prove this invariant:
$1 savings is attached to each bit storing 1.

Initially: $0 savings, no bit stores 1.

Increment: If each bit storing 1 has $1 saved before:

> increment receives $2

» change some bits from 1 to 0: spend their attached dollars
(does not use the received $2)

» may change a bit from 0 to 1: spend $1, save $1

Then each bit storing 1 has $1 saved after.
Savings > how many bits store 1’s > 0.

Amortized time O(2), i.e., O(1).

3/4

Binary Increment: Potential Method

Choose ®; = number of bits storing 1’s after i increments.
Check: @,, > @ because ®y = 0.
Therefore can use: amortized = actual + ®; — ®,_;.

At each increment:

> Say, t bits are changed from 1 to 0.

» In addition, may change 1 bit from 0 to 1.

> actual time < r+ 1, we are changing ¢ or ¢ + 1 bits

> O, —O;_; <-r+1,welostr 1’s and may gain back a 1

amortized time = (actual time) + ®; — ®;_;
S@E+D+(-t+1)
=2

Amortized time 0(2), i.e., O(1).

4/4

