
Binary Counter Increment
Put a k-bit number in an array C of k bits. LSB at C[0].
Initially all 0’s.

increment():
i := 0
while i < C.length and C[i] = 1:

C[i] := 0
i := i + 1

if i < C.length:
C[i] := 1

(For this example: modifying a bit takes Θ(1) time.)

Up to k bits could be already 1. Increment takes Θ(k) time worst
case. What about a sequence of m increments?

1 / 4

Binary Increment: Aggregate Method

▶ C[0] is modified m times
▶ C[1] is modified ⌊m/2⌋ times
▶ C[2] is modified ⌊m/4⌋ times
▶ C[i] is modified ⌊m/2i⌋ times

Total number of modifications:

k−1∑
i=0

⌊m
2i

⌋
<

∞∑
i=0

m
2i

= 2·m

m incrememts take O(m) total time. Amortized time O(1).

2 / 4

Binary Increment: Accounting Method
Each increment receives $2. Prove this invariant:
$1 savings is attached to each bit storing 1.

Initially: $0 savings, no bit stores 1.

Increment: If each bit storing 1 has $1 saved before:

▶ increment receives $2
▶ change some bits from 1 to 0: spend their attached dollars

(does not use the received $2)
▶ may change a bit from 0 to 1: spend $1, save $1

Then each bit storing 1 has $1 saved after.

Savings ≥ how many bits store 1’s ≥ 0.

Amortized time O(2), i.e., O(1).

3 / 4

Binary Increment: Potential Method
Choose Φi = number of bits storing 1’s after i increments.
Check: Φm ≥ Φ0 because Φ0 = 0.
Therefore can use: amortized = actual + Φi − Φi−1.

At each increment:

▶ Say, t bits are changed from 1 to 0.
▶ In addition, may change 1 bit from 0 to 1.
▶ actual time ≤ t + 1, we are changing t or t + 1 bits
▶ Φi − Φi−1 ≤ −t + 1, we lost t 1’s and may gain back a 1

amortized time = (actual time) + Φi − Φi−1

≤ (t + 1) + (−t + 1)

= 2

Amortized time O(2), i.e., O(1).

4 / 4

