
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

disjoint sets

Operations:

• make-set(x): create a set that contains x

• find-set(x): return the set that contains x

• union(S1, S2): merge sets S1 and S2, or

• union(x1, x2): merge set that contains x1 and set that
contains x2

Where have we seen this? Kruskal’s algorithm

2

linked lists implementation

• each set is a linked list

• x .set is a pointer to x ’s owning linked list

• find-set(x) is: follow pointer, Θ(1) time

• union(S1, S2) is merging two linked lists

• choose to always move the smaller list into the larger one

What is the amortised complexity of union?

3

linked lists implementation: complexity

What is the amortised complexity of union?

Consider a sequence of k operations make-set, find-set, and
union, with n operations make-set.

• the longest a list can be is: n elements

• operations make-set and find-set are: O(1) for a total of
O(k)

• operation union is:
• in the best case: smaller list has one node: 1 update
• in the worst case: smaller list has (almost) as many nodes as

larger list
• in the worst case: the size of list roughly doubles as a result

• then how many such updates can we do?
• each x .set field is updated at most: log n times
• there are n .set fields
• total number of updates at most: n log n

4

linked lists implementation: complexity

What is the amortised complexity of union?

Consider a sequence of k operations make-set, find-set, and
union, with n operations make-set.

Total time at most:

k + n log n ≤ k + k log n ∈ O(k log n)

Amortised time: O(log n)

5

forest implementation

• each set is a tree

• pointers from children to parents

• root points to itself
• each node stores rank

• an upper bound on the height of the tree rooted at that node

g,2

h,1

f,0

d,0

e,0i,0

b,1 c,0

6

forest implementation: make-set

• make-set creates a single-node tree

make-set(x):

0. root := new node(value=x, rank=0)

1. root.parent := root

2. return root

a, 0

7

forest implementation: union

• union makes root of shorter tree a child of root of taller tree

union(node1, node2):

link(find-set(node1), find-set(node2))

link(root1, root2):

0. if root1.rank > root2.rank:

1. root2.parent := root1

2. else:

3. root1.parent := root2

4. if root1.rank = root2.rank:

5. root2.rank++

8

forest implementation: union

• union makes root of shorter tree a child of root of taller tree

g,2

h,1

f,0

d,0

e,0i,0

b,1 c,0

9

forest implementation: union

• union makes root of shorter tree a child of root of taller tree

g,2

h,1

f,0

d,0

e,0i,0

b,1 c,0

9

forest implementation: union

• union makes root of shorter tree a child of root of taller tree

g,2

h,1

f,0

d,0

e,0i,0

c,2 b,1 a,0

10

forest implementation: union

• union makes root of shorter tree a child of root of taller tree

g,2

h,1

f,0

d,0

e,0i,0

c,2 b,1 a,0g,3

Called union by rank

10

forest implementation: find-set

• find-set follows links to root

find-set(node):

0. if node.parent != node:

1. return find-set(node.parent)

2. return node

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

11

forest implementation: find-set

• find-set follows links to root

find-set(node):

0. if node.parent != node:

1. return find-set(node.parent)

2. return node

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

a,0

11

forest implementation: find-set

• find-set follows links to root

find-set(node):

0. if node.parent != node:

1. return find-set(node.parent)

2. return node

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

b,1

11

forest implementation: find-set

• find-set follows links to root

find-set(node):

0. if node.parent != node:

1. return find-set(node.parent)

2. return node

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

c,2

11

forest implementation: find-set

• find-set follows links to root

find-set(node):

0. if node.parent != node:

1. return find-set(node.parent)

2. return node

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

d,3

11

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

a,0

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

b,1

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

c,2

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

d,3

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

c,2

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

b,1

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

a,0

12

forest implementation: find-set

• better: path compression

• find-set updates parent link directly to root

• ranks are not updated

find-set(node):

0. if node.parent != node:

1. node.parent := find-set(node.parent)

2. return node.parent

d,3 c,2 b,1 a,0

etc. etc. etc. etc.

12

forest implementation: complexity

• The best disjoint set implementation is forests using
union-by-rank and path compression.

• What is the worst-case sequence complexity?

• Can show worst-case time for a sequence of k operations with
n make-sets, is O(kα(n)) ∈ O(k log∗ n)

• Here log∗ n is the number of times that you need to apply log
to n until the answer is < 1

• for example, if n = 40, then 1 < log log 40 < 2 but
0 < log log log 40 < 1, so log∗ 40 = 3

• The function α grows very, very slowly, virtually a constant.

• Amortised time of disjoint set operations is O(α(n)).

• Full proof outside the scope of this course.

• Note this means the best implementation of Kruskal’s
algorithm has complexity O(|E | log |E |+ |E |α(|V |))) time.

13

