
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

introduction

Today we begin studying how to calculate

• the total time of

• a sequence of operations as a whole

As opposed to what?

2

multi-pop stack

As an example consider multi-pop stack operations:

• push(x):

• time complexity:

• pop():

• time complexity:

• multipop(k):

• pop() up to k times

• time complexity:

Start from empty and perform n operations. What is the total
time?

3

multi-pop stack: näıve cost analysis

Start from empty and perform n operations. What is the total
time?

1. each operation:

2. if stack size close to n:

3. total is:

But can this actually happen?

4

multi-pop stack: better cost analysis

Starting from empty, perform n operations:

1. at most n pushes

2. cannot pop / multipop more than what has been pushed

3. all pops and multipops together: at most n pops

4. total: n operations take O(n) time in the worst case

5

amortised time

Idea:

• if n operations take O(n) total time in the worst case, then

• each operation takes O(1) amortised time

In general:

• if n operations take O(f (n)) total time in the worst case, then

• each operation takes O(f (n)/n) amortised time

6

amortisation method #0: aggregate

Aggregate method:

• what we just saw with multi-pop stacks

• make an observation / argument about overall number of
steps in n operations

• usually examine how different operations depend on each other

• divide total steps by the number of operations

7

amortisation method #1: accounting

Accounting method:

Using our multi-pop stacks example, consider:

• each operation receives 2 dollars

• push and pop spend 1 dollar

• multipop(k) spends the number of items actually popped

• if leftover after operation: save for future

• if not enough for operation: spend from savings

Only works if:

1. Prove invariant:

2. Conclude: each operation takes O(2) amortised time (i.e.,
what it receives).

8

Accounting method: multipop example

Prove invariant: amount ≥ size.

1. Initially:

2. push:
• Assume amount ≥ size before push

•

•
• ∴ amount ′ ≥ size′

3. pop:
• Assume amount ≥ size before pop

•

•
• ∴ amount ′ ≥ size′

9

Accounting method: multipop example

Prove invariant: amount ≥ size.

4. multipop:
• Assume amount ≥ size before multipop

• Let k be the number of items popped.

•

•
• ∴ amount ′ ≥ size′

Finally, note that size ≥ 0 and therefore amount ≥ 0 is an
invariant.

10

multipop example: potential function

Formally:

• Define a potential function Φ(Di) = stack size after i
operations

• Let ti = time(operation i)

• Let t =
∑n

i=1 ti total time of n operations

• Let ai = ti +Φ(Di)− Φ(Di−1)

Then:

Thus, we can use O(ai) as amortised time upper bound.

11

multipop example: amortised time

Recall:

• Φ(Di) = stack size after i operations

• ti = time(operation i)

• ai = ti +Φ(Di)− Φ(Di−1)

Then:

• push:

• pop:

• multipop(k):

Conclusion: each amortised time is in O(1).

12

amortised time: in general

• Define Φ(Di):
potential function for data structure D after i operations

• Prove Φ(Dn) ≥ Φ(D0) for all n ≥ n0 sequences of operations

• Let ti = time(operation i)

• Then ai = ti +Φ(Di)− Φ(Di−1) is amortised time

• can be different for different operations

13

expandable arrays / dynamic arrays / array lists ...

Data structure:
• usual array operations:

• get(i): read A[i] for 0 ≤ i < size(A)

• set(i, x): write A[i] := x for 0 ≤ i < size(A)

• size(): return size of A : current number of elements in A

• but size can grow
• add(x):

• write x at the end of A, if there is space

• if A is full, double capacity and copy all elements before
adding x

• examples in your favourite programming languages?

14

expandable array: add

dynamic_array {

int capacity; // capacity: length of arr

int size; // current number of elements

T* arr; // array of elements (of some type T)

}

add(x):

0. if arr is empty:

1. arr := new array of length 1

2. if size = capacity:

3. capacity := 2 * capacity

4. newArr := new array of length capacity

5. copy elements of arr into newArr

6. arr := newArr

7. arr[size++] := x

15

expandable arrays: amortised time

Idea:

• get(), set(), size(): receive $1, spend $1.
• add(): receives $3.
• if need to double capacity and copy:

• since last copying, capacity/2 cells have $2 saved each
• so $capacity saved in total
• enough to copy

16

expandable arrays: amortised time

Invariant: capacity ≤ 2 ∗ size

Initially: capacity = 0 = size.

Let capacity and size be values before some operation, and
capacity ′ and size ′ be corresponding values after the operation.

17

expandable arrays: amortised time

Invariant: capacity ≤ 2 ∗ size

Define potential Φ(D) = 2 ∗ size − capacity .
Then Φ(Di) ≥ 0 for all i .

Prove: Φ(Dn)− Φ(D0) ≥ 0 for all sequences of n ≥ n0 = 0
operations.

Then can compute amortised time as ai = ti +Φ(Di)− Φ(Di−1).

18

expandable arrays: amortised time

Let s, c be array size and capacity before the i th operation.

• get(), size(), set(i, x): do not change size nor
capacity, O(1).

• add, if no copying:

• add, if copying:

Therefore amortised time is O(1).

19

