CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

introduction

Today we begin studying how to calculate

- the total time of
- a sequence of operations as a whole

As opposed to what?

- sum of the worst case times of
- each individual operation separately

multi-pop stack

As an example consider multi-pop stack operations:

- push (x) :
- time complexity: $\Theta(1)$
- pop():
- time complexity: $\Theta(1)$
- multipop(k):
- pop() up to k times
- time complexity: $\Theta(k)$ worst case

Start from empty and perform n operations. What is the total time?

multi-pop stack: naïve cost analysis

Start from empty and perform n operations. What is the total time?

1. each operation: multipop (k) takes $\mathcal{O}(k)$ time
2. if stack size close to n : multipop (n) takes $\mathcal{O}(n)$ time
3. total is: n operations take $\mathcal{O}\left(n^{2}\right)$ time

But can this actually happen?

- if multipop happens rarely, don't have n expensive operations
- if multipop happens often, stack size won't grow to n

So either way, we won't get $\mathcal{O}\left(n^{2}\right)$!

multi-pop stack: better cost analysis

Starting from empty, perform n operations:

1. at most n pushes
2. cannot pop / multipop more than what has been pushed
3. all pops and multipops together: at most n pops
4. total: n operations take $\mathcal{O}(n)$ time in the worst case

amortised time

Idea:

- if n operations take $\mathcal{O}(n)$ total time in the worst case, then
- each operation takes $\mathcal{O}(1)$ amortised time

In general:

- if n operations take $\mathcal{O}(f(n))$ total time in the worst case, then
- each operation takes $\mathcal{O}(f(n) / n)$ amortised time

amortisation method \#0: aggregate

Aggregate method:

- what we just saw with multi-pop stacks
- make an observation / argument about overall number of steps in n operations
- usually examine how different operations depend on each other
- divide total steps by the number of operations

amortisation method \#1: accounting

Accounting method:
Using our multi-pop stacks example, consider:

- each operation receives 2 dollars
- push and pop spend 1 dollar
- multipop(k) spends the number of items actually popped $\min (k$, size $)$ dollars
- if leftover after operation: save for future
- if not enough for operation: spend from savings

Only works if: always have enough to pay

1. Prove invariant: amount ≥ 0
2. Conclude: each operation takes $\mathcal{O}(2)$ amortised time (i.e., what it receives).

Accounting method: multipop example

Prove invariant: amount \geq size.

1. Initially: amount $=0=$ size
2. push:

- Assume amount \geq size before push
- amount' $=$ amount $+\operatorname{credit}($ push $)-\operatorname{cost}($ push $)=$ amount $+2-1=$ amount +1
- size $^{\prime}=$ size +1
- \therefore amount $^{\prime} \geq$ size $^{\prime}$

3. pop:

- Assume amount \geq size before pop
- amount $=$ amount $+\operatorname{credit}(\mathrm{pop})-\operatorname{cost}(\mathrm{pop})=$ amount $+2-1=$ amount +1
- size $^{\prime}=$ size -1
- $\therefore a^{\text {amount }}{ }^{\prime} \geq$ size $^{\prime}$

Accounting method: multipop example

Prove invariant: amount \geq size.
4. multipop:

- Assume amount \geq size before multipop
- Let k be the number of items popped.
- amount $^{\prime}=$ amount $+\operatorname{credit(multipop)~}-\operatorname{cost(multipop)}=$ amount +2 - k
- size $^{\prime}=$ size $-k$
- \therefore amount $^{\prime} \geq$ size $^{\prime}$

Finally, note that size ≥ 0 and therefore amount ≥ 0 is an invariant.

multipop example: potential function

Formally:

- Define a potential function $\Phi\left(D_{i}\right)=$ stack size after i operations
- Let $t_{i}=$ time(operation $\left.i\right)$
- Let $t=\sum_{i=1}^{n} t_{i}$ total time of n operations
- Let $a_{i}=t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$

Then:

$$
\begin{array}{rlr}
\sum_{i=1}^{n} a_{i} & =\sum_{i=1}^{n} t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) & \\
& =t+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right) & \\
& \geq t & \text { since } \Phi\left(D_{n}\right)-\Phi\left(D_{0}\right) \geq 0
\end{array}
$$

Thus, we can use $\mathcal{O}\left(a_{i}\right)$ as amortised time upper bound.

multipop example: amortised time

Recall:

- $\Phi\left(D_{i}\right)=$ stack size after i operations
- $t_{i}=$ time(operation i)
- $a_{i}=t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$

Then:

- push: $a_{i}=1+\left(\Phi\left(D_{i-1}\right)+1\right)-\Phi\left(D_{i-1}\right)=2$
- pop: $a_{i}=1+\left(\Phi\left(D_{i-1}\right)-1\right)-\Phi\left(D_{i-1}\right)=0$
- multipop $(k): a_{i}=j+\left(\Phi\left(D_{i-1}\right)-j\right)-\Phi\left(D_{i-1}\right)=0$ where $j=\min \left(k, \Phi\left(D_{i-1}\right)\right)$

Conclusion: each amortised time is in $\mathcal{O}(1)$.

amortised time: in general

- Define $\Phi\left(D_{i}\right)$: potential function for data structure D after i operations
- Prove $\Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)$ for all $n \geq n_{0}$ sequences of operations
- Let $t_{i}=$ time(operation $\left.i\right)$
- Then $a_{i}=t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ is amortised time
- can be different for different operations

expandable arrays / dynamic arrays / array lists ...

Data structure:

- usual array operations:
- get (i): read $A[i]$ for $0 \leq i<\operatorname{size}(A)$
- $\operatorname{set}(i, x):$ write $A[i]:=x$ for $0 \leq i<\operatorname{size}(A)$
- size(): return size of A : current number of elements in A
- but size can grow
- add (x):
- write x at the end of A, if there is space
- if A is full, double capacity and copy all elements before adding x
- examples in your favourite programming languages?

expandable array: add

```
dynamic_array {
        int capacity; // capacity: length of arr
        int size; // current number of elements
        T* arr; // array of elements (of some type T)
}
add(x):
O. if arr is empty:
1. arr := new array of length 1
2. if size = capacity:
3. capacity := 2 * capacity
4. newArr := new array of length capacity
5. copy elements of arr into newArr
6. arr := newArr
7. arr[size++] := x
```


expandable arrays: amortised time

Idea:

- get(), set(), size(): receive $\$ 1$, spend $\$ 1$.
- add(): receives \$3.
- if need to double capacity and copy:
- since last copying, capacity/2 cells have $\$ 2$ saved each
- so \$capacity saved in total
- enough to copy

expandable arrays: amortised time

Invariant: capacity $\leq 2 *$ size
Initially: capacity $=0=$ size.
Let capacity and size be values before some operation, and capacity' and size' be corresponding values after the operation. Assume capacity $\leq 2 *$ size.

- get(), size(), set(i, x): no change
- add(x):
- if size < capacity: capacity ${ }^{\prime}=$ capacity $\leq 2 *$ size $<2 *($ size +1$)=2 *$ size $^{\prime}$
- if size = capacity:
capacity $^{\prime}=2 *$ capacity $=2 *$ size $=2 *\left(\right.$ size $\left.^{\prime}-1\right)<2 *$ size $^{\prime}$

expandable arrays: amortised time

Invariant: capacity $\leq 2 *$ size
Define potential $\Phi(D)=2 *$ size - capacity. Then $\Phi\left(D_{i}\right) \geq 0$ for all i.

Prove: $\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right) \geq 0$ for all sequences of $n \geq n_{0}=0$ operations.
$\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)=\Phi\left(D_{n}\right)-(2 * 0-0)=\Phi\left(D_{n}\right) \geq 0$

Then can compute amortised time as $a_{i}=t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$.

expandable arrays: amortised time

Let s, c be array size and capacity before the $i^{\text {th }}$ operation.

- get(), size(), set(i, x): do not change size nor capacity, $\mathcal{O}(1)$.
- add, if no copying:

$$
a_{i}=t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=1+(2 *(s+1)-c)-(2 * s-c)=3
$$

- add, if copying:

$$
\begin{aligned}
a_{i} & =t_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \\
& =(c+1)+(2 *(s+1)-2 * c)-(2 * s-c) \\
& =3
\end{aligned}
$$

Therefore amortised time is $\mathcal{O}(1)$.

