
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

finding the shortest paths

a

b c d

e

h

i

g f

4

8

11

8 7

4

2
9

14

10

2

6

1

7

• Given an (edge-)weighted graph and two vertices in it,

• find the cheapest (minimum possible weight) path between
them, or

• report that one does not exist.

2

finding the shortest paths

a

b c d

e

h

i

g f

4

8

11

8 7

4

2
9

14

10

2

6

1

7

Even better:

• Given an (edge-)weighted graph and a vertex s in it,

• find the cheapest (minimum possible weight) paths from s to
all other vertices.

2

Dijkstra’s algorithm: idea

Dijkstra’s algorithm finds shortest paths by a BFS with a twist

• the queue is replaced with a minimum priority queue

• with an additional operation decrease-priority(vertex,

new-priority)

Keep unvisited vertices in the priority queue:

priority(v) = distance(start, v) via finished vertices only

priority(v) = ∞ if no such path

The algorithm grows paths by one edge at a time.

Correctness idea: every time we extract-min, we get the next
vertex closest to start.

3

Dijkstra’s algorithm: example

a

b c d

e

h

i

g f

4

8

11

8 7

4

2
9

14

10

2

6

1

7

Priority queue contains vertices not in tree:

vertex a b c d e f g h i
priority 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
pred

Distance tree:

4

Dijkstra’s algorithm

0. PQ := new min-heap()

1. PQ.insert(0, start)

2. start.d := 0

3. for each vertex v != start:

4. PQ.insert(inf, v)

5. v.d := inf

6. while not PQ.is-empty():

7. u := PQ.extract-min()

8. for each v in u's adjacency list, v in PQ:

9. d' := u.d + weight(u, v)

10. if d' < v.d:

11. PQ.decrease-priority(v, d')

12. v.d := d'

13. v.pred := u

5

Dijkstra’s algorithm: time

Let n = |V | and m = |E |. Then:
• every vertex enters and leaves min-heap once

•
•

• with every edge may call decrease-priority
•

• the rest can be done in Θ(1) per vertex or per edge

Total time worst case:

6

Dijkstra’s algorithm: proof

Let

• δ(v) be the weight of the shortest path from start vertex s to
v ,

• δfin(v) be the weight of the shortest path from start vertex s
to v among paths via finished vertices only (not in PQ), and

• p(v) be priority of v .

Dijkstra’s algorithm maintains the loop invariants:

1. for each v in PQ, p(v) = v .d = δfin(v), i.e. considering only
paths via finished vertices (vertices not in PQ),

2. for each v not in PQ, v .d = δ(v) over all paths, and v .pred is
the vertex before v on the shortest path.

7

Dijkstra’s algorithm: proof

Initially (after lines 0-5):

• PQ contains all of V ,

• s.d = p(s) = 0, and

• v .d = p(v) = ∞, for all v ̸= s

so (1) and (2) are true.

8

Dijkstra’s algorithm: proof

Suppose (1) and (2) are true on line 6.

9

Dijkstra’s algorithm: proof

(cont.)

10

Dijkstra’s algorithm: proof

Now to show u.d = δ(u).

11

