CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

finding the shortest paths

- Given an (edge-)weighted graph and two vertices in it,
- find the cheapest (minimum possible weight) path between them, or
- report that one does not exist.

finding the shortest paths

Even better:

- Given an (edge-)weighted graph and a vertex s in it,
- find the cheapest (minimum possible weight) paths from s to all other vertices.

Dijkstra's algorithm: idea

Dijkstra's algorithm finds shortest paths by a BFS with a twist

- the queue is replaced with a minimum priority queue
- with an additional operation decrease-priority (vertex, new-priority)
Keep unvisited vertices in the priority queue:
$\operatorname{priority}(v)=\operatorname{distance}($ start,$v)$ via finished vertices only
$\operatorname{priority}(v)=\infty$ if no such path

The algorithm grows paths by one edge at a time.
Correctness idea: every time we extract-min, we get the next vertex closest to start.

Dijkstra's algorithm: example

Priority queue contains vertices not in tree:

vertex priority pred	0	a	b	c	d	e	f	g	h
i									

Distance tree:

Dijkstra's algorithm

0. PQ := new min-heap()
1. PQ.insert (0, start)
2. start.d := 0
3. for each vertex v != start:
4. PQ.insert(inf, v)
5. v.d := inf
6. while not PQ.is-empty():
7. u := PQ.extract-min()
8. for each v in u's adjacency list, v in $P Q:$
9. d' := u.d + weight(u, v)
10. if $\mathrm{d}^{\prime}<\mathrm{v} . \mathrm{d}$:
11. PQ.decrease-priority(v, d')
12. v.d := d'
13. v.pred := u

Dijkstra's algorithm: time

Let $n=|V|$ and $m=|E|$. Then:

- every vertex enters and leaves min-heap once
-
- with every edge may call decrease-priority
- the rest can be done in $\Theta(1)$ per vertex or per edge Total time worst case:

Dijkstra's algorithm: proof

Let

- $\delta(v)$ be the weight of the shortest path from start vertex s to v,
- $\delta_{\text {fin }}(v)$ be the weight of the shortest path from start vertex s to v among paths via finished vertices only (not in $P Q$), and
- $p(v)$ be priority of v.

Dijkstra's algorithm maintains the loop invariants:

1. for each v in $P Q, p(v)=v . d=\delta_{\text {fin }}(v)$, i.e. considering only paths via finished vertices (vertices not in $P Q$),
2. for each v not in $P Q, v . d=\delta(v)$ over all paths, and $v . p r e d$ is the vertex before v on the shortest path.

Dijkstra's algorithm: proof

Initially (after lines 0-5):

- $P Q$ contains all of V,
- $s . d=p(s)=0$, and
- $v . d=p(v)=\infty$, for all $v \neq s$
so (1) and (2) are true.

Dijkstra's algorithm: proof

Suppose (1) and (2) are true on line 6.

Dijkstra's algorithm: proof

(cont.)

Dijkstra's algorithm: proof

Now to show $u \cdot d=\delta(u)$.

