
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

introduction

a

b c d

e

h

i

g f

4

8

11

8 7

4

2
9

14

10

2

6

1

7

An (edge-)weighted graph

Applications?

•

2

weighted graph

A weighted (edge-weighted) graph consists of:

• a set of vertices V

• a set of edges E
• weights: a map w : E → R (usually ≥ 0)

• if undirected graph: (u, v) and (v , u) have the same weight
• if directed graph: (u, v) and (v , u) may have different weights

3

storing a weighted graph

A B

C

D

E

4

1

5

2

Adjacency matrix:

A B C D E

A 0 4 2 ∞ ∞
B 4 0 1 5 ∞
C 2 1 0 ∞ ∞
D ∞ 5 ∞ 0 ∞
E ∞ ∞ ∞ ∞ 0

Adjacency lists:

adjacency list

A (B,4), (C ,2)
B (A,4), (C ,1), (D,5)
C (A,2), (B,1)
D (B,5)
E

4

minimum spanning tree

• common task #1 on weighted graphs
• find a spanning tree

• a tree that covers all vertices
• a tree T such that every vertex v ∈ V is an endpoint of at

least one edge in T

• minimise the sum of the weights of the edges used
• weight(T) =

∑
(u,v)∈T weight(u, v)

• want tree T with minimum weight(T)

A B

C

D
4

1

5

2

Usually just for undirected, connected graphs.
5

Kruskal’s algorithm: idea

Kruskal’s algorithm finds a MST by successive mergers.

1. At first, each vertex is its own small cluster/tree/set.

2. Find an edge of minimum weight, use it to merge two
clusters/trees/sets into one.

• Do not create cycles!

3. Do it again. . .

4. In general, find an edge of minimum weight that crosses two
clusters; merge them into one.

Correctness idea: at each iteration find the cheapest way to merge
two trees.

6

Kruskal’s algorithm: example

a

b c d

e

h

i

g f

4

8

11

8 7

4

2
9

14

10

2

6

1

7

L: [(g,h,1), (c,i,2), (f,g,2), (c,f,4), (a,b,4),

(g,i,6), (c,d,7), (h,i,7), (a,h,8), (b,c,8),

(d,e,9), (e,f,10), (b,h,11), (d,f,14)]

Clusters:
MST:

7

Kruskal’s algorithm

0. T := new container for edges

1. L := edges sorted in non-decreasing order by weight

2. for each vertex v:

3. v.cluster := make-cluster(v)

4. for each (u, v) in L:

5. if u.cluster != v.cluster:

6. T.add((u,v))

7. merge u.cluster and v.cluster

8. return T

8

storing clusters

An easy way for now:

• each cluster is a linked list

• v .cluster is pointer to v ’s owning linked list

• u.cluster ̸= v .cluster is:
• merging two clusters is merging two linked lists:

• a lot of vertices may need their v .cluster’s updated!

9

storing clusters

An easy way for now, continued...

Choose to always move the smaller list to the larger one:

• in the best case:

• in the worst case:

• in the worst case:

• then how many such merges can we do?

• each v .cluster is updated at most:

A much better way will appear later in this course.

10

Kruskal’s algorithm: time

Let n = |V | and m = |E |. Then:
• Collecting and sorting edges:

• v .cluster updates:

• the rest is Θ(1) per vertex or edge

Total:
But lets look at n and m:

• maximum number of edges in a graph with n vertices:

• then

Then total time is

11

Prim’s algorithm: idea

Prim’s algorithm finds a MST by a BFS with a twist:

• the queue is replaced with a minimum priority queue
• with an additional operation decrease-priority(vertex,
new-priority)

• Exercise: show that decrease-priority is O(log n) where n
is the size of the priority queue

Keep unvisited vertices in the priority queue:

priority(v) = minimum weight of any edge between v and tree

priority(v) = ∞ if no such edge

The algorithm grows a tree by one edge at a time.

Correctness idea: every time we extract-min, we get the
cheapest edge to add to the tree.

12

Prim’s algorithm: example

a

b c d

e

h

i

g f

4

8

11

8 7

4

2
9

14

10

2

6

1

7

Priority queue contains vertices not in tree:

vertex a b c d e f g h i
priority 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
pred

MST:

13

Prim’s algorithm

0. T := new container for edges

1. PQ := new min-heap()

2. start := pick a vertex

3. PQ.insert(0, start)

4. for each vertex v != start: PQ.insert(inf, v)

5. while not PQ.is-empty():

6. u := PQ.extract-min()

7. T.add((u.pred, u))

8. for each v in u's adjacency list:

9. if v in PQ and w(u, v) < priority(v):

10. PQ.decrease-priority(v, w(u,v))

11. v.pred := u

12. return T

14

Prim’s algorithm: time

Let n = |V | and m = |E |. Then:
• every vertex enters and leaves min-heap once

•
•

• with every edge may call decrease-priority
•

• the rest can be done in Θ(1) per vertex or per edge

Total time worst case:

15

Kruskal’s algorithm

0. T := new container for edges

1. L := edges sorted in non-decreasing order by weight

2. for each vertex v:

3. v.cluster := make-cluster(v)

4. for each (u, v) in L:

5. if u.cluster != v.cluster:

6. T.add((u,v))

7. merge u.cluster and v.cluster

8. return T

16

Kruskal’s algorithm: correctness

Kruskal’s algorithm maintains the loop invariants:

1. each cluster is a tree

2. T ⊆ Tmin for some MST Tmin

Initially T is empty and clusters are single vertices, so trivially true.

Suppose (1) and (2) are true before line 4.

17

Kruskal’s algorithm: correctness

Suppose (1) and (2) are true before line 4.

18

Prim’s algorithm

0. T := new container for edges

1. PQ := new min-heap()

2. start := pick a vertex

3. PQ.insert(0, start)

4. for each vertex v != start: PQ.insert(inf, v)

5. while not PQ.is-empty():

6. u := PQ.extract-min()

7. T.add((u.pred, u))

8. for each v in u's adjacency list:

9. if v in PQ and w(u, v) < priority(v):

10. PQ.decrease-priority(v, w(u,v))

11. v.pred := u

12. return T

19

Prim’s algorithm: correctness

Prim’s algorithm maintains the loop invariants:

1. T contains vertices in V − PQ

2. for each v in PQ, priority(v) = minimum weight of any edge
between v and T

3. T ⊆ Tmin for some MST Tmin

Initially T is empty, PQ contains all of V , and all priorities are ∞,
so trivially true.

Suppose (1), (2), and (3) are true before line 5.

20

Prim’s algorithm: correctness

Suppose (1), (2), and (3) are true before line 5. Let p = u.pred .

21

General Theorem

Suppose

• T ⊆ Tmin

• can partition V into S and V − S (cut), such that
• no T edge between V and V − S
• (u, v) is the cheapest edge (light edge) connecting V and

V − S (crosses the cut)

Then T + {(u, v)} ⊆ T ′
min

• if (u, v) /∈ Tmin

• Tmin has a unique simple path from u to v , via some edge
(u′, v ′) with u′ ∈ S and v ′ ∈ V − S

• Tmin without (u′, v ′) disconnected; (u, v) would would
reconnect

• weight(u, v) ≤ weight(u′, v′)

• Choose T ′
min = Tmin − {(u′, v ′)}+ {(u, v)}

22

