CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

introduction

An (edge-)weighted graph
Applications?

weighted graph

A weighted (edge-weighted) graph consists of:

- a set of vertices V
- a set of edges E
- weights: a map $w: E \rightarrow \mathbb{R}$ (usually $\geq 0)$
- if undirected graph: (u, v) and (v, u) have the same weight
- if directed graph: (u, v) and (v, u) may have different weights

storing a weighted graph

Adjacency matrix:

	A	B	C	D	E
A	0	4	2	∞	∞
B	4	0	1	5	∞
C	2	1	0	∞	∞
D	∞	5	∞	0	∞
E	∞	∞	∞	∞	0

Adjacency lists:

	adjacency list
A	$(B, 4),(C, 2)$
B	$(A, 4),(C, 1),(D, 5)$
C	$(A, 2),(B, 1)$
D	$(B, 5)$
E	

minimum spanning tree

- common task \#1 on weighted graphs
- find a spanning tree
- a tree that covers all vertices
- a tree T such that every vertex $v \in V$ is an endpoint of at least one edge in T
- minimise the sum of the weights of the edges used
- $\operatorname{weight}(T)=\sum_{(u, v) \in T} \operatorname{weight}(u, v)$
- want tree T with minimum weight (T)

Usually just for undirected, connected graphs.

Kruskal's algorithm: idea

Kruskal's algorithm finds a MST by successive mergers.

1. At first, each vertex is its own small cluster/tree/set.
2. Find an edge of minimum weight, use it to merge two clusters/trees/sets into one.

- Do not create cycles!

3. Do it again. .
4. In general, find an edge of minimum weight that crosses two clusters; merge them into one.

Correctness idea: at each iteration find the cheapest way to merge two trees.

Kruskal's algorithm: example

$$
\begin{aligned}
L: \quad(& (g, h, 1),(c, i, 2),(f, g, 2),(c, f, 4),(a, b, 4), \\
& (g, i, 6),(c, d, 7),(h, i, 7),(a, h, 8),(b, c, 8), \\
& (d, e, 9),(e, f, 10),(b, h, 11),(d, f, 14)]
\end{aligned}
$$

Clusters:
MST:

Kruskal's algorithm

0. T := new container for edges
1. L := edges sorted in non-decreasing order by weight
2. for each vertex v:
3. v.cluster := make-cluster(v)
4. for each (u, v) in L:
5. if u.cluster ! $=$ v.cluster:
6. T.add ((u,v))
7. merge u.cluster and v.cluster
8. return T

storing clusters

An easy way for now:

- each cluster is a linked list
- v.cluster is pointer to v 's owning linked list
- u.cluster $\neq v$.cluster is:
- merging two clusters is merging two linked lists:
- a lot of vertices may need their v.cluster's updated!

storing clusters

An easy way for now, continued...
Choose to always move the smaller list to the larger one:

- in the best case:
- in the worst case:
- in the worst case:
- then how many such merges can we do?
- each v.cluster is updated at most:

A much better way will appear later in this course.

Kruskal's algorithm: time

Let $n=|V|$ and $m=|E|$. Then:

- Collecting and sorting edges:
- v.cluster updates:
- the rest is $\Theta(1)$ per vertex or edge

Total:
But lets look at n and m :

- maximum number of edges in a graph with n vertices:
- then

Then total time is

Prim's algorithm: idea

Prim's algorithm finds a MST by a BFS with a twist:

- the queue is replaced with a minimum priority queue
- with an additional operation decrease-priority (vertex, new-priority)
- Exercise: show that decrease-priority is $\mathcal{O}(\log n)$ where n is the size of the priority queue

Keep unvisited vertices in the priority queue:
$\operatorname{priority}(v)=$ minimum weight of any edge between v and tree $\operatorname{priority}(v)=\infty$ if no such edge

The algorithm grows a tree by one edge at a time.
Correctness idea: every time we extract-min, we get the cheapest edge to add to the tree.

Prim's algorithm: example

Priority queue contains vertices not in tree:

vertex priority pred	0	a	b	c	d	e	f	g	h
i									

MST:

Prim's algorithm

0. T := new container for edges
1. $P Q:=$ new min-heap()
2. start := pick a vertex
3. PQ.insert (0, start)
4. for each vertex v != start: PQ.insert(inf, v)
5. while not PQ.is-empty():
6. u := PQ.extract-min()
7. T.add((u.pred, u))
8. for each v in u's adjacency list:
9. if v in $P Q$ and $w(u, v)$ priority (v):
10. PQ.decrease-priority (v, w(u,v))
11. v.pred := u
12. return T

Prim's algorithm: time

Let $n=|V|$ and $m=|E|$. Then:

- every vertex enters and leaves min-heap once
- with every edge may call decrease-priority
- the rest can be done in $\Theta(1)$ per vertex or per edge Total time worst case:

Kruskal's algorithm

0. T := new container for edges
1. L := edges sorted in non-decreasing order by weight
2. for each vertex v:
3. v.cluster := make-cluster(v)
4. for each (u, v) in L:
5. if u.cluster != v.cluster:
6. T.add ((u,v))
7. merge u.cluster and v.cluster
8. return T

Kruskal's algorithm: correctness

Kruskal's algorithm maintains the loop invariants:

1. each cluster is a tree
2. $T \subseteq T_{\text {min }}$ for some MST $T_{\text {min }}$

Initially T is empty and clusters are single vertices, so trivially true.

Suppose (1) and (2) are true before line 4.

Kruskal's algorithm: correctness

Suppose (1) and (2) are true before line 4.

Prim's algorithm

0. T := new container for edges
1. $P Q:=$ new min-heap()
2. start := pick a vertex
3. PQ.insert (0, start)
4. for each vertex v != start: PQ.insert(inf, v)
5. while not PQ.is-empty():
6. u := PQ.extract-min()
7. T.add((u.pred, u))
8. for each v in u's adjacency list:
9. if v in $P Q$ and $w(u, v)$ priority (v):
10. PQ.decrease-priority (v, w(u,v))
11. v.pred := u
12. return T

Prim's algorithm: correctness

Prim's algorithm maintains the loop invariants:

1. T contains vertices in $V-P Q$
2. for each v in $P Q$, priority $(v)=$ minimum weight of any edge between v and T
3. $T \subseteq T_{\text {min }}$ for some MST $T_{\text {min }}$

Initially T is empty, $P Q$ contains all of V, and all priorities are ∞, so trivially true.

Suppose (1), (2), and (3) are true before line 5.

Prim's algorithm: correctness

Suppose (1), (2), and (3) are true before line 5. Let $p=u$.pred.

General Theorem

Suppose

- $T \subseteq T_{\text {min }}$
- can partition V into S and $V-S$ (cut), such that
- no T edge between V and $V-S$
- (u, v) is the cheapest edge (light edge) connecting V and $V-S$ (crosses the cut)
Then $T+\{(u, v)\} \subseteq T_{\text {min }}^{\prime}$
- if $(u, v) \notin T_{\text {min }}$
- $T_{\text {min }}$ has a unique simple path from u to v, via some edge (u^{\prime}, v^{\prime}) with $u^{\prime} \in S$ and $v^{\prime} \in V-S$
- $T_{\text {min }}$ without $\left(u^{\prime}, v^{\prime}\right)$ disconnected; (u, v) would would reconnect
- weight $(u, v) \leq \operatorname{weight}\left(u^{\prime}, v^{\prime}\right)$
- Choose $T_{\text {min }}^{\prime}=T_{\text {min }}-\left\{\left(u^{\prime}, v^{\prime}\right)\right\}+\{(u, v)\}$

