
CSCB63 Tutorial 6 — BFS produces shortest paths

An important result about Breadth-First Search is that it finds the shortest paths from the start
vertex. In this tutorial, we will prove that BFS correctly computes distances from the start vertex
to each other vertex.

0. BFS(s):

1. for all v:

2. v.seen := false

3. v.d = inf

4. queue := new Queue()

5. queue.enqueue(s)

6. s.seen := true

7. s.d := 0 // distance from s to s

8. while not queue.is_empty():

9. u := queue.dequeue()

10. for each v in u's adjacency list:

11. if not v.seen:

12. v.seen := true

13. v.d = u.d + 1 // distance from s to v

14. queue.enqueue(v)

Definition 1. Let G = (V,E) be a directed or undirected graph, with v, u ∈ V . Define the shortest-
path distance δ(u, v) from u to v as the minimum number of edges on any path from u to v in G. If
there is no path from u to v, then define δ(u, v) = ∞.

Lemma 1. Let G = (V,E) be a directed or undirected graph, let s ∈ V . Then for any edge
(u, v) ∈ E,

δ(s, v) ≤ δ(s, u) + 1

Proof.

Lemma 2. Let G = (V,E) be a directed or undirected graph, let s ∈ V , and suppose we run
BFS(s). Then for any vertex v, at each point during the execution of the algorithm (including at
termination),

δ(s, v) ≤ v.d

Proof. By induction on the number of enqueue calls.

Next we prove that at every point during BFS, the values v.d of all nodes v in the queue are
either all the same or look like this: ..., k, k, k + 1, k + 1, Formally:

Lemma 3. If during execution of BFS the queue contains vertices (v1, v2, . . . , vn) where v1 is at the
head of the queue, then

vn.d ≤ v1.d+ 1 and vi.d ≤ vi+1.d for all 1 ≤ i < n

Proof. By induction on the number of queue operations (both enqueue and dequeue).

1

Lemma 4. Suppose vertex u is enqueued before vertex v during BFS. Then u.d ≤ v.d at the time
v is enqueued.

Proof. Follows from the previous Lemma.

Theorem 1. Upon termination of BFS on a graph G = (V,E) from a start vertex s ∈ V , for every
node v ∈ V , v.d = δ(s, v).

Proof.

2

