CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

strongly connected component (SCC)

Strongly connected component (SCC): maximal subset of vertices reachable from each other.

Three strongly connected components: $\{e, o\},\{f, g, h, k\},\{m\}$.

transposed graph

Transpose of $G\left(G^{\mathrm{T}}\right)$ means a graph with the same vertices as G and the edges are the reverse of G 's. Why is it called "transpose"? matrix representation is transpose
G :

$$
G^{\mathrm{T}}:
$$

G^{T} has the same strongly connected components as G^{\prime} s. How much time to compute adjacency lists of $G^{\mathrm{T}}: \quad O(|V|+|E|)$

computing SCCs: idea

1. DFS on G

- visit all vertices
- store all finish times
- accumulate vertices in reverse finish-time order

2. Compute adjacency lists of G^{T}
3. DFS on G^{T}

- use the above order to pick start/restart vertices

4. Each tree found has the vertices of one strongly connected component.
Total time: $O(|V|+|E|)$

computing SCCs: example

computing SCCs: DFS(G)

O. mark all vertices white

1. time := 0
2. R := []
3. for each vertex v:
4. if v is white:
5. DFS-visit(v)
6. DFS-visit(u):
7. mark u gray
8. for each v in adjacency list of u:
9. if v is white:
10. DFS-visit(v)
11. mark u black
12. finish-time(u) := ++time
13. insert u at the front of R

computing SCCs: $\operatorname{DFS}\left(G^{\mathrm{T}}\right)$

O. mark all vertices white

1. for each vertex v in R's order:
2. if v is white:
3. SCC := []
4. DFS-visit2(v)
5. output/record SCC
6. DFS-visit2(u):
7. add u to SCC
8. mark u gray
9. for each v in u's adjacency list in $\mathrm{G}^{\wedge} \mathrm{T}$:
10. if v is white:
11. DFS-visit2(v)
12. mark u black

computing SCC: proof

Prove: each depth-first tree found in $\operatorname{DFS}\left(G^{T}\right)$ is a SCC.
Let C and C^{\prime} be distinct SCC's of G.
Define max_finish $^{\prime}(C)=\max \{$ finish_time $(u) \mid u \in C\}$.
Proof steps:

- If some vertex $u \in C$ has an edge in G to some $v \in C^{\prime}$, then max_finish $(C)>$ max_finish $_{(}\left(C^{\prime}\right)$.
- C discovered earlier: will go from C into C^{\prime} (via (u, v) or otherwise), then finish C^{\prime}, then back to finish C.
- C^{\prime} discovered earlier: C^{\prime} finished without visiting C because no path from C^{\prime} to C : Why no such path?
- In G^{T}, if some vertex $v \in C^{\prime}$ has an edge to some $u \in C$, then max_finish $^{\prime}(C)>$ max_finish $^{\prime}\left(C^{\prime}\right)$.

computing SCC: proof

Proof steps (continued):

- In G^{T}, if some vertex $v \in C^{\prime}$ has an edge to some $u \in C$, then max_finish $(C)>$ max_finish $\left(C^{\prime}\right)$.
- If max_finish $(C)>$ max_finish $\left.^{(} C^{\prime}\right)$, then in G^{T} no edge from C to C^{\prime}.
- $\operatorname{DFS}\left(G^{T}\right)$:
- start vertex $s \in C$ with largest max_finish $^{(C)}$ of all SCCs
- visit all vertices reachable from s
- G^{T} has no edge from C to another SCC C^{\prime}
- never visit another SCC C^{\prime}
- then select another start vertex $s_{2} \in C_{2}$ with largest max_finish (C) of all SCCs except for C
- ...

Complete proof: textbook / exercise: by induction on the number of depth-first trees found.

