CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai



strongly connected component (SCC)

Strongly connected component (SCC): maximal subset of vertices
reachable from each other.

ps

Three strongly connected components: {e, o}, {f, g, h, k}, {m}.



transposed graph

Transpose of G (GT) means a graph with the same vertices as G
and the edges are the reverse of G's.
Why is it called “transpose”? matrix representation is transpose

G GT:
7\ T
L/L/_n?__,. bt e

GT has the same strongly connected components as G's.
How much time to compute adjacency lists of GT:  O(|V| + |E|)



computing SCCs: idea
1. DFSon G

® visit all vertices
® store all finish times
® accumulate vertices in reverse finish-time order

N

. Compute adjacency lists of GT
3. DFSon G7
® use the above order to pick start/restart vertices
4. Each tree found has the vertices of one strongly connected
component.

Total time: O(|V| + |E|)



computing SCCs: example

O MO)
GEROSS0



computing SCCs: DFS(G)

. mark all vertices white

time := 0
R := []
for each vertex v:
if v is white:
DFS-visit(v)

DFS-visit(u):
mark u gray

for each v in adjacency list of u:

if v is white:
DFS-visit (v)
mark u black
finish-time(u) := ++time
insert u at the front of R



ad W N = O

© 0 N O

10.
11.
12.

computing SCCs: DFS(GT)

. mark all vertices white
. for each vertex v in R's order:

if v is white:
scc := []
DFS-visit2(v)
output/record SCC

. DFS-visit2(u):

add u to SCC
mark u gray
for each v in u's adjacency list in G°T:
if v is white:
DFS-visit2(v)
mark u black



computing SCC: proof
Prove: each depth-first tree found in DFS(G ') is a SCC.

Let C and C’ be distinct SCC's of G.
Define max_finish(C) = max{ finish_time(u) | v € C}.

Proof steps:

e |f some vertex u € C has an edge in G to some v € C’, then
maz_finish(C) > max_finish(C").

® ( discovered earlier: will go from C into C’ (via (u, v) or
otherwise), then finish C’, then back to finish C.

e (' discovered earlier: C’ finished without visiting C because

no path from C’ to C: Why no such path?

e In GT, if some vertex v € C’ has an edge to some u € C,
then max_finish(C) > max_finish(C").



computing SCC: proof

Proof steps (continued):

e In GT, if some vertex v € C’ has an edge to some u € C,
then maz_finish(C) > maz_finish(C").

* If max_finish(C) > max_finish(C'), then in G* no edge
from C to C'.

® DFS(GT):

start vertex s € C with largest max_finish(C) of all SCCs

visit all vertices reachable from s

GT has no edge from C to another SCC C’

never visit another SCC C’

then select another start vertex s, € G, with largest
max_finish(C) of all SCCs except for C

Complete proof: textbook / exercise: by induction on the number
of depth-first trees found.



