
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

strongly connected component (SCC)

Strongly connected component (SCC): maximal subset of vertices
reachable from each other.

k

h

g

f
m

e o

Three strongly connected components: {e, o}, {f , g , h, k}, {m}.

2

transposed graph

Transpose of G (GT) means a graph with the same vertices as G
and the edges are the reverse of G ’s.
Why is it called “transpose”? matrix representation is transpose

G :

k

h

g

f
m

e o

GT:

k

h

g

f
m

e o

GT has the same strongly connected components as G ’s.
How much time to compute adjacency lists of GT: O(|V |+ |E |)

3

computing SCCs: idea

1. DFS on G
• visit all vertices
• store all finish times
• accumulate vertices in reverse finish-time order

2. Compute adjacency lists of GT

3. DFS on GT

• use the above order to pick start/restart vertices

4. Each tree found has the vertices of one strongly connected
component.

Total time: O(|V |+ |E |)

4

computing SCCs: example

a b c d

e f g h

5

computing SCCs: DFS(G)

0. mark all vertices white

1. time := 0

2. R := []

3. for each vertex v:

4. if v is white:

5. DFS-visit(v)

6. DFS-visit(u):

7. mark u gray

8. for each v in adjacency list of u:

9. if v is white:

10. DFS-visit(v)

11. mark u black

12. finish-time(u) := ++time

13. insert u at the front of R

6

computing SCCs: DFS(GT)

0. mark all vertices white

1. for each vertex v in R's order:

2. if v is white:

3. SCC := []

4. DFS-visit2(v)

5. output/record SCC

6. DFS-visit2(u):

7. add u to SCC

8. mark u gray

9. for each v in u's adjacency list in G^T:

10. if v is white:

11. DFS-visit2(v)

12. mark u black

7

computing SCC: proof

Prove: each depth-first tree found in DFS(GT) is a SCC.

Let C and C ′ be distinct SCC’s of G .
Define max finish(C) = max{finish time(u) | u ∈ C}.

Proof steps:
• If some vertex u ∈ C has an edge in G to some v ∈ C ′, then

max finish(C) > max finish(C ′).

• C discovered earlier: will go from C into C ′ (via (u, v) or
otherwise), then finish C ′, then back to finish C .

• C ′ discovered earlier: C ′ finished without visiting C because
no path from C ′ to C : Why no such path?

• In GT, if some vertex v ∈ C ′ has an edge to some u ∈ C ,
then max finish(C) > max finish(C ′).

8

computing SCC: proof

Proof steps (continued):

• In GT, if some vertex v ∈ C ′ has an edge to some u ∈ C ,
then max finish(C) > max finish(C ′).

• If max finish(C) > max finish(C ′), then in GT no edge
from C to C ′.

• DFS(GT):
• start vertex s ∈ C with largest max finish(C) of all SCCs
• visit all vertices reachable from s
• GT has no edge from C to another SCC C ′

• never visit another SCC C ′

• then select another start vertex s2 ∈ C2 with largest
max finish(C) of all SCCs except for C

• . . .

Complete proof: textbook / exercise: by induction on the number
of depth-first trees found.

9

