CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹based on notes by Anna Bretscher and Albert Lai

priority queue

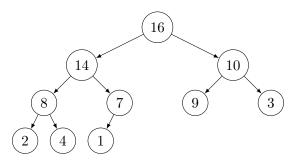
Collection of priority-job pairs; priorities must be comparable.

- insert(p, j): insert job j with priority p
- max(): return job with max priority
- extract-max(): remove and return job with max priority

heap

A heap is one way to store a priority queue. A heap is:

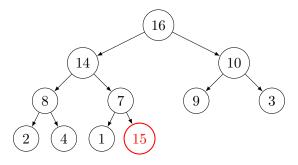
- a binary tree
- "nearly complete": every level *i* has 2^{*i*} nodes, except the bottom level; the bottom nodes flush to the left
- at each node n: priority(n) ≥ priority(n.left) and priority(n) ≥ priority(n.right)



.

heap insert: example

Insert job with priority 15.



 $\sqrt{\ }$ The tree is still "nearly-complete". But:

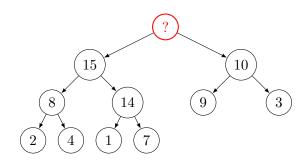
heap insert: algorithm

```
insert(p, j):
```

- 1. v := new node(p, j)
- insert v at bottom level, leftmost free place (keep the tree "nearly-complete")
- 3. while v has parent p with p.priority < v.priority:
 - swap v.priority and p.priority
 - swap v.job and p.job
 - v := parent(v)

Worst case time:

heap extract-max: example



new root?

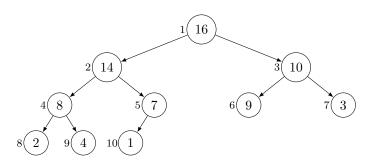
heap extract-max: algorithm

extract-max():

- 1. max_p, max_j = root.priority, root.job
- move (priority, job) from last (bottom, rightmost) node into root
- 3. remove last node
- 4. v := root
- 5. while v has child c with c.priority > v.priority:
 - c := child of v with largest priority
 - swap v.priority and c.priority
 - swap v.job and c.job
 - v := c
- return max_p, max_j

Worst case time:

heap in array/vector



	16	14	10	8	7	9	3	2	4	1	
0	1	2	3	4	5	6	7	8	9	10	11

heap in array/vector

	16	14	10	8	7	9	3	2	4	1	
0	1	2	3	4	5	6	7	8	9	10	11

Easy:

- where to insert/remove?
- saves space:

Where are children/parents?

- left child of node at index i:
- right child of node at index i:
- parent of index node at *i*:

Downside?

heap: height

Let n be the number of nodes, h be the height.

- largest n: bottom level is full
 - •
- smallest n: only 1 node at bottom level
 - h-1 levels are full
 - •