CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

priority queue

Collection of priority-job pairs; priorities must be comparable.

- insert (p, j) : insert job j with priority p
- $\max ()$: return job with max priority
- extract-max(): remove and return job with max priority

heap

A heap is one way to store a priority queue. A heap is:

- a binary tree
- "nearly complete": every level i has 2^{i} nodes, except the bottom level; the bottom nodes flush to the left
- at each node n : $\operatorname{priority}(n) \geq \operatorname{priority}$ (n.left) and $\operatorname{priority}(n) \geq \operatorname{priority}(n . r i g h t)$

heap insert: example

Insert job with priority 15.

$\sqrt{ }$ The tree is still "nearly-complete". But:

heap insert: algorithm

insert(p, j):

1. $v:=$ new node (p, j)
2. insert v at bottom level, leftmost free place (keep the tree "nearly-complete")
3. while v has parent p with p.priority < v.priority:

- swap v.priority and p.priority
- swap v.job and p.job
- v := parent(v)

Worst case time:

heap extract-max: example

new root?

heap extract-max: algorithm

extract-max():

1. $m_{1} x_{1}, \max _{-}=$root.priority, root.job
2. move (priority, job) from last (bottom, rightmost) node into root
3. remove last node
4. v := root
5. while v has child c with c .priority > v.priority:

- c := child of v with largest priority
- swap v.priority and c.priority
- swap v.job and c.job
- v := c

6. return max_p, max_j

Worst case time:
heap in array/vector

| | 16 | 14 | 10 | 8 | 7 | 9 | 3 | 2 | 4 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{l}_{0} 12$

heap in array/vector

	16	14	10	8	7	9	3	2	4	1	
0	1	2	3	4	5	6	7	8	9	10	11

Easy:

- where to insert/remove?
- saves space:

Where are children/parents?

- left child of node at index i :
- right child of node at index i :
- parent of index node at i :

Downside?

heap: height

Let n be the number of nodes, h be the height.

- largest n : bottom level is full
- smallest n : only 1 node at bottom level
- $h-1$ levels are full

