
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1



priority queue

Collection of priority-job pairs; priorities must be comparable.

• insert(p, j): insert job j with priority p

• max(): return job with max priority

• extract-max(): remove and return job with max priority

2



heap

A heap is one way to store a priority queue. A heap is:

• a binary tree

• “nearly complete”: every level i has 2i nodes, except the
bottom level; the bottom nodes flush to the left

• at each node n: priority(n) ≥ priority(n.left) and
priority(n) ≥ priority(n.right)

16

14

8

2 4

7

1

10

9 3

3



heap insert: example

Insert job with priority 15.

16

14

8

2 4

7

1 15

10

9 3

16

14

8

2 4

15

1 7

10

9 3

16

15

8

2 4

14

1 7

10

9 3

√
The tree is still “nearly-complete”. But:

! Order of priorities bad. Fix: swap with parent.

4



heap insert: example

Insert job with priority 15.

16

14

8

2 4

7

1 15

10

9 3

16

14

8

2 4

15

1 7

10

9 3

16

15

8

2 4

14

1 7

10

9 3

√
The tree is still “nearly-complete”. But:

! Order of priorities bad. Fix: swap with parent.

4



heap insert: example

Insert job with priority 15.

16

14

8

2 4

7

1 15

10

9 3

16

14

8

2 4

15

1 7

10

9 3

16

15

8

2 4

14

1 7

10

9 3

√
The tree is still “nearly-complete”. But:

√
Order of priorities good.

4



heap insert: algorithm

insert(p, j):

1. v := new node(p, j)

2. insert v at bottom level, leftmost free place
(keep the tree “nearly-complete”)

3. while v has parent p with p.priority < v.priority:
• swap v.priority and p.priority
• swap v.job and p.job
• v := parent(v)

Worst case time: Θ(height)

Later we will see why height = ⌊log n⌋+ 1. Therefore worse case
time Θ(log n).

5



heap extract-max: example

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

new root?

6



heap extract-max: example

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

replace by the bottom level, rightmost item.
√

The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with the larger child.
(Why not the smaller child?)

6



heap extract-max: example

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

replace by the bottom level, rightmost item.
√

The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with the larger child.
(Why not the smaller child?)

6



heap extract-max: example

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

replace by the bottom level, rightmost item.
√

The tree is still “nearly-complete”.
√

Order of priorities good.

6



heap extract-max: algorithm

extract-max():

1. max_p, max_j = root.priority, root.job

2. move (priority, job) from last (bottom, rightmost) node
into root

3. remove last node

4. v := root

5. while v has child c with c.priority > v.priority:
• c := child of v with largest priority
• swap v.priority and c.priority
• swap v.job and c.job
• v := c

6. return max_p, max_j

Worst case time: Θ(height)

Later we will see why height = ⌊log n⌋+ 1. Therefore worse case
time Θ(log n).

7



heap in array/vector

161

142

84

28 49

75

110

103

96 37

16 14 10 8 7 9 3 2 4 1

0 1 2 3 4 5 6 7 8 9 10 11

8



heap in array/vector

16 14 10 8 7 9 3 2 4 1

0 1 2 3 4 5 6 7 8 9 10 11

Easy:

• where to insert/remove? simply at the end

• saves space: no pointers to store

Where are children/parents?

• left child of node at index i : at index 2× i

• right child of node at index i : at index 2× i + 1

• parent of index node at i : at index ⌊i/2⌋
Downside?

9



heap: height

Let n be the number of nodes, h be the height.
• largest n: bottom level is full

• n = 2h − 1

• smallest n: only 1 node at bottom level
• h − 1 levels are full
• n = (2h−1 − 1) + 1

(2h−1 − 1) + 1 ≤ n ≤ 2h − 1

2h−1 ≤ n < 2h

h − 1 ≤ log2 n < h

h ≤ (log2 n) + 1 < h + 1

h = ⌊log2 n⌋+ 1

10


