CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai

introduction

cities and highways between them
computers and network cables between them
people and relationships

in a board game: a state and legal moves to other states

undirected graph
i @
&)

An undirected graph is a pair (V, E) of:

® V: a set of vertices (above:

® £: a set of edges, where an edge is a pair of vertices
(above:
(usually, no edge from a vertex to itself)
undirected graph — no direction specified, bidirectional

graph terminology: incident, endpoint, degree

Edge incident on vertex, vertex is an endpoint of edge: e.g.,
{a, ¢} is incident on a; a is an endpoint of {a, c}

{a, c} is incident on c; c is an endpoint of {a, c}

{a, ¢} is not incident on b; b is not an endpoint of {a, c}

Degree of vertex: how many edges are incident on it.

©,
()

b d
3 1

vertex | a
degree | 2

c e
2 0

graph terminology: adjacent

Two vertices are adjacent iff there is an edge between them.

&

a

d

e

oD Q 060 T w

J
Vv

LG T

v
v

v

©

is adjacent to

D Q 60 T W

b, c
a, c d
a, b
b

storing a graph: adjacency matrix

Q.

<0
<

o QN0 T
<<
<L T

VAN
)

Adjacency matrix = store this in a
Let n=|V| and m = |E|. Then in terms of n and m:

® space:
® “who are adjacent to v?" time:

® “are v and w adjacent?” time:

storing a graph: adjacency lists

is adjacent to

albc
@ b|ac d
clab
d| b
2——(b)—(a) ’

Adjacency lists = store this in a
Let n=|V| and m = |E|. Then in terms of n, m, and degree(v):

® space:
® “who are adjacent to v?" time:
® “are v and w adjacent?” time:

® optimal for graph searches

graph terminology: (simple) path, reachable

A (simple) path is a non-empty sequence of vertices in which
® consecutive vertices are adjacent

® vertices are distinct
(d) is a path, length 0.
(d, b, c) is a path, length 2.
(d
(d

, b, c, b) is a not a (simple) path.
,a, b) is not a path.

<

is reachable from u iff there is a path from u to v.

graph terminology: (simple) cycle

A (simple) cycle is a non-empty sequence of vertices in which

® consecutive vertices are adjacent
® first vertex = last vertex

® vertices are distinct except first=last; edges used are distinct

(v) is not a cycle
(b, c,a,b) is a simple cycle, length 3. ((b, c,a) in some books.)

(b,c,a,b,d, e, b) is not a (simple) cycle:
(b,d, b) is not a cycle:

graph terminology: (dis)connected, component

A graph is connected iff between every two distinct vertices there is
a path.
A graph is disconnected iff it is not connected.

Disconnected: Connected:

©

—)—) ()¢
Component: maximal subset of vertices reachable from each other.
(Sometimes also include their edges.)

E.g., the graph on the left has two components:

10

tree: definition and results

A tree is a graph that is connected and has no cycles.

Equivalently:

between every two vertices, a unique simple path
connected, but disconnected if any edge removed
connected, and |E| = |V| -1

no cycles, but has a cycle if any edge added

no cycles, and |E| = |V| -1

Exercise: convince yourself that these are equivalent!

11

graph terminology: forest

A forest is a collection of trees (may be disconnected). A forest

has no cycles.

Breadth-First Search

Specify or arbitrarily pick a start vertex.

0.

L=

visit the start vertex

visit vertices 1 edge away from the above

visit unvisited vertices 1 edge away from the above
visit unvisited vertices 1 edge away from the above

13

w N = O

© 00 N O O

Breadth-First Search

start := pick a vertex

. queue := new Queue()
. queue.enqueue(start)
. mark start as seen

// distance(start) = 0

. while not queue.is_empty(Q):

u := queue.dequeue()
for each v in u's adjacency list:
if v is not seen:
queue . enqueue (v)
mark v as seen
// edge {u,v} is a "breadth-first tree edge"
// u is v's "predecessor"
// distance(v) = distance(u) + 1

14

Breadth-First Search

BFS finds:
® whether a vertex is reachable from start
® if yes, a shortest path and distance
® a tree consisting of the reachable vertices from start
® the component containing start

Shortest paths and the tree are non-unique:

15

Breadth-First Search

BFS running time:
1. we enqueue and dequeue each vertex once:

2. we consider each edge twice:

3. we find each vertex's adjacency list once:

4. check v's “seen” status deg(v) times:

.
Assume ©(1) time for
® marking/checking a vertex's “seen” status
e finding a vertex's adjacency list
Then BFS total time:

Exercise: What if the assumption doesn't hold?

16

Depth-First Search

Specify or arbitrarily pick a start vertex.

0.

visit the start vertex

1. choose one adjacent, unvisited vertex of the previous; visit it
2. choose one adjacent, unvisited vertex of the previous; visit it
3. ...
4

. whenever you have no choice, backtrack to the last time you

had a choice, choose another one

17

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

u

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; nothing to backtrack, the end.

18

Depth-First Search

. mark all vertices white
. time := 0

w N = O

start := pick a vertex

. DFS-visit(start)

0 N O O

DFS-visit(u):
discovery-time(u) := ++time
mark u gray
for each v in u's adjacency list:
if v is white:
// edge {u,v} is a depth-first tree edge
// predecessor(v) = u
DFS-visit (v)
mark u black
finish-time(u) := ++time

Depth-First Search

——— depth-first tree edge

)
N

O

DFS finds:

whether a vertex is reachable from start
a tree consisting of the reachable vertices from start
the component containing start

(with a small modification) whether a cycle exists

20

Depth-First Search

DFS running time:

1. we visit each vertex once:
[]

2. we consider each edge twice:
[]

3. we find each vertex's adjacency list once:

4. check v's colour deg(v) times:
[]

Assume ©(1) time for
® marking/checking a vertex's colour
e finding a vertex's adjacency list
Then DFS total time:

Exercise: What if the assumption doesn't hold?

cycle detection

During DFS, if something like this happens:

breadcrumb

When u has an edge to a gray vertex that is not its predecessor.

Then it must be because. .. you have found a cycle.

Conversely, if this never happens, there is no cycle. (Harder to
prove.)

29

cycle detection

. mark all vertices white
. for each vertex s:

if s is white:
if has-cycle(s): return True
return False

. has-cycle(u):

mark u gray
for each v in u's adjacency list:
if v is white:
predecessor(v) = u
if has-cycle(v): return True
elif v is gray and v is not predecessor(u):
return True
mark u black

return False
bl

cycle detection: example

a (b) (o) d

24

directed graph
A directed graph G is a pair (V, E) of:
® V' — a set of vertices
® [— a set of edges, where an edge is a pair of vertices

(usually, we disallow edges from a vertex to itself)

Each edge specifies one direction.
(a, b) lets you go from a to b, if present.
(b, a) lets you go from b to a, if present.

Many definitions need small modifications.

75

storing a directed graph: adjacency lists

adjacency list

d

®\®

oD Q 060 T W
oS- oT L 0

“c is adjacent to a”, but not “ais adjacent to c¢”.

26

directed graph: modified definitions

out-degree: how many edges go out of a vertex
in-degree: how many edges go into a vertex
degree: out-degree + in-degree

path, reachable: must comply with edge directions

path (vo,..., vk) requires (vo,v1) € E, ..., (vk—1,v) € E
cycle: must comply with edge directions
cycle (vp, ..., vk_1, Vo) requires (vo,v1) € E, ...,

(vk—1,v0) € E

Note: (b, d, b) is a simple cycle this time: (b, d) and (d, b)
are two different edges.

BFS, DFS: no change needed because:

27

directed graph: BFS/DFS

BFS/DFS depend on the choice of the start vertex:

i

a d

® will visit every vertex if start at:
® will not visit every vertex if start at:

(Unlike in undirected graphs.)

28

directed graph: cycle detection

If something like this happens:

— breadcrumb

e if we encounter an edge to a gray vertex, then

Different from undirected graphs.

20

directed graph: cycle detection

. mark all vertices white

for each vertex s:
if s is white:
if has-cycle(s): return True
return False

. has-cycle(u):

mark u gray
for each v in u's adjacency list:
if v is white:
if has-cycle(v): return True
elif v is gray:
return True
mark u black
return False

20

