CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

introduction

- cities and highways between them
- computers and network cables between them
- people and relationships
- in a board game: a state and legal moves to other states

undirected graph

An undirected graph is a pair (V, E) of:

- V : a set of vertices (above:
- E : a set of edges, where an edge is a pair of vertices (above:
(usually, no edge from a vertex to itself) undirected graph - no direction specified, bidirectional

graph terminology: incident, endpoint, degree

Edge incident on vertex, vertex is an endpoint of edge: e.g., $\{a, c\}$ is incident on $a ; a$ is an endpoint of $\{a, c\}$
$\{a, c\}$ is incident on $c ; c$ is an endpoint of $\{a, c\}$
$\{a, c\}$ is not incident on $b ; b$ is not an endpoint of $\{a, c\}$
Degree of vertex: how many edges are incident on it.

graph terminology: adjacent

Two vertices are adjacent iff there is an edge between them.

storing a graph: adjacency matrix

	a	b	c	d	e
a		$\sqrt{ }$	$\sqrt{ }$		
b	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	
c	$\sqrt{ }$	$\sqrt{ }$			
d		$\sqrt{ }$			
e					

Adjacency matrix $=$ store this in a \qquad Let $n=|V|$ and $m=|E|$. Then in terms of n and m :

- space:
- "who are adjacent to v ?" time:
- "are v and w adjacent?" time:

storing a graph: adjacency lists

	is adjacent to
a	b, c
b	a, c, d
c	a, b
d	b
e	

Adjacency lists $=$ store this in a \qquad
Let $n=|V|$ and $m=|E|$. Then in terms of n, m, and degree (v) :

- space:
- "who are adjacent to v ?" time:
- "are v and w adjacent?" time:
- optimal for graph searches

graph terminology: (simple) path, reachable

A (simple) path is a non-empty sequence of vertices in which

- consecutive vertices are adjacent
- vertices are distinct

$\langle d\rangle$ is a path, length 0.
$\langle d, b, c\rangle$ is a path, length 2.
$\langle d, b, c, b\rangle$ is a not a (simple) path.
$\langle d, a, b\rangle$ is not a path.
v is reachable from u iff there is a path from u to v.

graph terminology: (simple) cycle

A (simple) cycle is a non-empty sequence of vertices in which

- consecutive vertices are adjacent
- first vertex = last vertex
- vertices are distinct except first=last; edges used are distinct
- $\langle v\rangle$ is not a cycle

$\langle b, c, a, b\rangle$ is a simple cycle, length 3. ($\langle b, c, a\rangle$ in some books.) $\langle b, c, a, b, d, e, b\rangle$ is not a (simple) cycle:
$\langle b, d, b\rangle$ is not a cycle:

graph terminology: (dis)connected, component

A graph is connected iff between every two distinct vertices there is a path.
A graph is disconnected iff it is not connected.

Disconnected:

Connected:

Component: maximal subset of vertices reachable from each other. (Sometimes also include their edges.)
E.g., the graph on the left has two components:

tree: definition and results

A tree is a graph that is connected and has no cycles.
Equivalently:

- between every two vertices, a unique simple path
- connected, but disconnected if any edge removed
- connected, and $|E|=|V|-1$
- no cycles, but has a cycle if any edge added
- no cycles, and $|E|=|V|-1$

Exercise: convince yourself that these are equivalent!

graph terminology: forest

A forest is a collection of trees (may be disconnected). A forest has no cycles.

Breadth-First Search

Specify or arbitrarily pick a start vertex.
0 . visit the start vertex

1. visit vertices 1 edge away from the above
2. visit unvisited vertices 1 edge away from the above
3. visit unvisited vertices 1 edge away from the above
4. ...

Breadth-First Search

0. start := pick a vertex
1. queue $:=$ new Queue()
2. queue.enqueue (start)
3. mark start as seen
// distance(start) $=0$
4. while not queue.is_empty():
5. u := queue.dequeue()
6. for each v in u 's adjacency list:
7. if v is not seen:
8. queue.enqueue (v)
9. mark v as seen
// edge $\{u, v\}$ is a "breadth-first tree edge"
// u is v's "predecessor"
// distance(v) = distance(u) + 1

Breadth-First Search

BFS finds:

- whether a vertex is reachable from start
- if yes, a shortest path and distance
- a tree consisting of the reachable vertices from start
- the component containing start

Shortest paths and the tree are non-unique:

Breadth-First Search

BFS running time:

1. we enqueue and dequeue each vertex once:
2. we consider each edge twice:
3. we find each vertex's adjacency list once:
4. check v 's "seen" status $\operatorname{deg}(v)$ times:

Assume $\Theta(1)$ time for

- marking/checking a vertex's "seen" status
- finding a vertex's adjacency list

Then BFS total time:
Exercise: What if the assumption doesn't hold?

Depth-First Search

Specify or arbitrarily pick a start vertex.
0 . visit the start vertex

1. choose one adjacent, unvisited vertex of the previous; visit it
2. choose one adjacent, unvisited vertex of the previous; visit it 3.
3. whenever you have no choice, backtrack to the last time you had a choice, choose another one

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.)
no adjacent, unvisited vertex; nothing to backtrack, the end.

Depth-First Search

O. mark all vertices white

1. time $:=0$
2. start := pick a vertex
3. DFS-visit(start)
4. DFS-visit(u):
5. discovery-time(u) := ++time
6. mark u gray
7. for each v in u 's adjacency list:
8. if v is white:
// edge $\{u, v\}$ is a depth-first tree edge // predecessor (v) = u
9. DFS-visit(v)
10. mark u black
11. finish-time(u) := ++time

Depth-First Search

DFS finds:

- whether a vertex is reachable from start
- a tree consisting of the reachable vertices from start
- the component containing start
- (with a small modification) whether a cycle exists

Depth-First Search

DFS running time:

1. we visit each vertex once:
2. we consider each edge twice: \bullet
3. we find each vertex's adjacency list once:
4. check v 's colour $\operatorname{deg}(v)$ times:

Assume $\Theta(1)$ time for

- marking/checking a vertex's colour
- finding a vertex's adjacency list

Then DFS total time:
Exercise: What if the assumption doesn't hold?

cycle detection

During DFS, if something like this happens:

—— breadcrumb

When u has an edge to a gray vertex that is not its predecessor.
Then it must be because. . . you have found a cycle.
Conversely, if this never happens, there is no cycle. (Harder to prove.)

cycle detection

0. mark all vertices white
1. for each vertex s:
2. if s is white:
3. if has-cycle(s): return True
4. return False
5. has-cycle(u):
6. mark u gray
7. for each v in u's adjacency list:
8. if v is white:
9. predecessor(v) = u
10. if has-cycle(v): return True
11. elif v is gray and v is not predecessor(u):
12. return True
13. mark u black
14. return False

cycle detection: example

directed graph

A directed graph G is a pair (V, E) of:

- V - a set of vertices
- E - a set of edges, where an edge is a pair of vertices (usually, we disallow edges from a vertex to itself)

Each edge specifies one direction.
(a, b) lets you go from a to b, if present.
(b, a) lets you go from b to a, if present.
Many definitions need small modifications.

storing a directed graph: adjacency lists

	adjacency list
a	c
b	a, d
c	b
d	b
e	

" c is adjacent to a ", but not " a is adjacent to c ".

directed graph: modified definitions

- out-degree: how many edges go out of a vertex in-degree: how many edges go into a vertex degree: out-degree + in-degree
- path, reachable: must comply with edge directions path $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ requires $\left(v_{0}, v_{1}\right) \in E, \ldots,\left(v_{k-1}, v_{k}\right) \in E$
- cycle: must comply with edge directions cycle $\left\langle v_{0}, \ldots, v_{k-1}, v_{0}\right\rangle$ requires $\left(v_{0}, v_{1}\right) \in E, \ldots$, $\left(v_{k-1}, v_{0}\right) \in E$
Note: $\langle b, d, b\rangle$ is a simple cycle this time: (b, d) and (d, b) are two different edges.
- BFS, DFS: no change needed because:

directed graph: BFS/DFS

BFS/DFS depend on the choice of the start vertex:

- will visit every vertex if start at:
- will not visit every vertex if start at:
(Unlike in undirected graphs.)

directed graph: cycle detection

If something like this happens:

OR

\longrightarrow breadcrumb

- if we encounter an edge to a gray vertex, then

Different from undirected graphs.

directed graph: cycle detection

0. mark all vertices white
1. for each vertex s:
2. if s is white:
3. if has-cycle(s): return True
4. return False
5. has-cycle(u):
6. mark u gray
7. for each v in u's adjacency list:
8. if v is white:
9. if has-cycle(v): return True
10. elif v is gray:
11. return True
12. mark u black
13. return False
