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introduction

cities and highways between them
computers and network cables between them
people and relationships

in a board game: a state and legal moves to other states




undirected graph
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An undirected graph is a pair (V, E) of:

® V: a set of vertices (above:

® £: a set of edges, where an edge is a pair of vertices
(above:
(usually, no edge from a vertex to itself)
undirected graph — no direction specified, bidirectional



graph terminology: incident, endpoint, degree

Edge incident on vertex, vertex is an endpoint of edge: e.g.,
{a, ¢} is incident on a; a is an endpoint of {a, c}

{a, c} is incident on c; c is an endpoint of {a, c}

{a, ¢} is not incident on b; b is not an endpoint of {a, c}

Degree of vertex: how many edges are incident on it.
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graph terminology: adjacent

Two vertices are adjacent iff there is an edge between them.
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storing a graph: adjacency matrix
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Adjacency matrix = store this in a
Let n=|V| and m = |E|. Then in terms of n and m:

® space:
® “who are adjacent to v?" time:

® “are v and w adjacent?” time:



storing a graph: adjacency lists
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Adjacency lists = store this in a
Let n=|V| and m = |E|. Then in terms of n, m, and degree(v):

® space:
® “who are adjacent to v?" time:
® “are v and w adjacent?” time:

® optimal for graph searches



graph terminology: (simple) path, reachable

A (simple) path is a non-empty sequence of vertices in which
® consecutive vertices are adjacent

® vertices are distinct
(d) is a path, length 0.
(d, b, c) is a path, length 2.
(d
(d

, b, c, b) is a not a (simple) path.
,a, b) is not a path.

<

is reachable from u iff there is a path from u to v.



graph terminology: (simple) cycle

A (simple) cycle is a non-empty sequence of vertices in which

® consecutive vertices are adjacent
® first vertex = last vertex

® vertices are distinct except first=last; edges used are distinct

(v) is not a cycle
(b, c,a,b) is a simple cycle, length 3. ((b, c,a) in some books.)

(b,c,a,b,d, e, b) is not a (simple) cycle:
(b,d, b) is not a cycle:



graph terminology: (dis)connected, component

A graph is connected iff between every two distinct vertices there is
a path.
A graph is disconnected iff it is not connected.

Disconnected: Connected:
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Component: maximal subset of vertices reachable from each other.
(Sometimes also include their edges.)

E.g., the graph on the left has two components:
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tree: definition and results

A tree is a graph that is connected and has no cycles.

Equivalently:

between every two vertices, a unique simple path
connected, but disconnected if any edge removed
connected, and |E| = |V| -1

no cycles, but has a cycle if any edge added

no cycles, and |E| = |V| -1

Exercise: convince yourself that these are equivalent!
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graph terminology: forest

A forest is a collection of trees (may be disconnected). A forest

has no cycles.




Breadth-First Search

Specify or arbitrarily pick a start vertex.

0.

L=

visit the start vertex

visit vertices 1 edge away from the above

visit unvisited vertices 1 edge away from the above
visit unvisited vertices 1 edge away from the above
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w N = O
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Breadth-First Search

start := pick a vertex

. queue := new Queue()
. queue.enqueue(start)
. mark start as seen

// distance(start) = 0

. while not queue.is_empty(Q):

u := queue.dequeue()
for each v in u's adjacency list:
if v is not seen:
queue . enqueue (v)
mark v as seen
// edge {u,v} is a "breadth-first tree edge"
// u is v's "predecessor"
// distance(v) = distance(u) + 1
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Breadth-First Search

BFS finds:
® whether a vertex is reachable from start
® if yes, a shortest path and distance
® a tree consisting of the reachable vertices from start
® the component containing start

Shortest paths and the tree are non-unique:
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Breadth-First Search

BFS running time:
1. we enqueue and dequeue each vertex once:

2. we consider each edge twice:

3. we find each vertex's adjacency list once:

4. check v's “seen” status deg(v) times:

.
Assume ©(1) time for
® marking/checking a vertex's “seen” status
e finding a vertex's adjacency list
Then BFS total time:

Exercise: What if the assumption doesn't hold?
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Depth-First Search

Specify or arbitrarily pick a start vertex.

0.

visit the start vertex

1. choose one adjacent, unvisited vertex of the previous; visit it
2. choose one adjacent, unvisited vertex of the previous; visit it
3. ...
4

. whenever you have no choice, backtrack to the last time you

had a choice, choose another one
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Depth-First Search

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit
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Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit
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Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18



Depth-First Search
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Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search

breadcrumb

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack
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Depth-First Search

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; nothing to backtrack, the end.
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Depth-First Search

. mark all vertices white
. time := 0

w N = O

start := pick a vertex

. DFS-visit(start)

0 N O O

DFS-visit(u):
discovery-time(u) := ++time
mark u gray
for each v in u's adjacency list:
if v is white:
// edge {u,v} is a depth-first tree edge
// predecessor(v) = u
DFS-visit (v)
mark u black
finish-time(u) := ++time



Depth-First Search

——— depth-first tree edge
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DFS finds:

whether a vertex is reachable from start
a tree consisting of the reachable vertices from start
the component containing start

(with a small modification) whether a cycle exists
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Depth-First Search

DFS running time:

1. we visit each vertex once:
[ ]

2. we consider each edge twice:
[ ]

3. we find each vertex's adjacency list once:

4. check v's colour deg(v) times:
[ ]

Assume ©(1) time for
® marking/checking a vertex's colour
e finding a vertex's adjacency list
Then DFS total time:

Exercise: What if the assumption doesn't hold?



cycle detection

During DFS, if something like this happens:

breadcrumb

When u has an edge to a gray vertex that is not its predecessor.

Then it must be because. .. you have found a cycle.

Conversely, if this never happens, there is no cycle. (Harder to
prove.)
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cycle detection

. mark all vertices white
. for each vertex s:

if s is white:
if has-cycle(s): return True
return False

. has-cycle(u):

mark u gray
for each v in u's adjacency list:
if v is white:
predecessor(v) = u
if has-cycle(v): return True
elif v is gray and v is not predecessor(u):
return True
mark u black

return False
bl



cycle detection: example

a (b) (o) d
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directed graph
A directed graph G is a pair (V, E) of:
® V' — a set of vertices
® [ — a set of edges, where an edge is a pair of vertices

(usually, we disallow edges from a vertex to itself)

Each edge specifies one direction.
(a, b) lets you go from a to b, if present.
(b, a) lets you go from b to a, if present.

Many definitions need small modifications.
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storing a directed graph: adjacency lists

adjacency list
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“c is adjacent to a”, but not “ais adjacent to c¢”.
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directed graph: modified definitions

out-degree: how many edges go out of a vertex
in-degree: how many edges go into a vertex
degree: out-degree + in-degree

path, reachable: must comply with edge directions

path (vo,..., vk) requires (vo,v1) € E, ..., (vk—1,v) € E
cycle: must comply with edge directions
cycle (vp, ..., vk_1, Vo) requires (vo,v1) € E, ...,

(vk—1,v0) € E

Note: (b, d, b) is a simple cycle this time: (b, d) and (d, b)
are two different edges.

BFS, DFS: no change needed because:
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directed graph: BFS/DFS

BFS/DFS depend on the choice of the start vertex:

i

a d

® will visit every vertex if start at:
® will not visit every vertex if start at:

(Unlike in undirected graphs.)
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directed graph: cycle detection

If something like this happens:

— breadcrumb

e if we encounter an edge to a gray vertex, then

Different from undirected graphs.
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directed graph: cycle detection

. mark all vertices white

for each vertex s:
if s is white:
if has-cycle(s): return True
return False

. has-cycle(u):

mark u gray
for each v in u's adjacency list:
if v is white:
if has-cycle(v): return True
elif v is gray:
return True
mark u black
return False
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