
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

introduction

• cities and highways between them

• computers and network cables between them

• people and relationships

• in a board game: a state and legal moves to other states

a b

c

d

e

a graph

2

undirected graph

a b

c

d

e

An undirected graph is a pair (V ,E) of:

• V : a set of vertices (above:

• E : a set of edges, where an edge is a pair of vertices
(above:
(usually, no edge from a vertex to itself)
undirected graph — no direction specified, bidirectional

3

graph terminology: incident, endpoint, degree

Edge incident on vertex, vertex is an endpoint of edge: e.g.,
{a, c} is incident on a; a is an endpoint of {a, c}
{a, c} is incident on c ; c is an endpoint of {a, c}
{a, c} is not incident on b; b is not an endpoint of {a, c}

Degree of vertex: how many edges are incident on it.

a b

c

d

e

vertex a b c d e

degree 2 3 2 1 0

4

graph terminology: adjacent

Two vertices are adjacent iff there is an edge between them.

a b

c

d

e

a b c d e

a
√ √

b
√ √ √

c
√ √

d
√

e

is adjacent to

a b, c
b a, c , d
c a, b
d b
e

5

storing a graph: adjacency matrix

a b

c

d

e

a b c d e

a
√ √

b
√ √ √

c
√ √

d
√

e

Adjacency matrix = store this in a
Let n = |V | and m = |E |. Then in terms of n and m:

• space:

• “who are adjacent to v?” time:

• “are v and w adjacent?” time:

6

storing a graph: adjacency lists

a b

c

d

e

is adjacent to

a b, c
b a, c , d
c a, b
d b
e

Adjacency lists = store this in a
Let n = |V | and m = |E |. Then in terms of n, m, and degree(v):

• space:

• “who are adjacent to v?” time:

• “are v and w adjacent?” time:

• optimal for graph searches

7

graph terminology: (simple) path, reachable

A (simple) path is a non-empty sequence of vertices in which

• consecutive vertices are adjacent

• vertices are distinct

a b

c

d

e

⟨d⟩ is a path, length 0.
⟨d , b, c⟩ is a path, length 2.
⟨d , b, c , b⟩ is a not a (simple) path.
⟨d , a, b⟩ is not a path.

v is reachable from u iff there is a path from u to v .

8

graph terminology: (simple) cycle

A (simple) cycle is a non-empty sequence of vertices in which

• consecutive vertices are adjacent

• first vertex = last vertex

• vertices are distinct except first=last; edges used are distinct

• ⟨v⟩ is not a cycle

a b

c

d

e

⟨b, c , a, b⟩ is a simple cycle, length 3. (⟨b, c , a⟩ in some books.)
⟨b, c , a, b, d , e, b⟩ is not a (simple) cycle:
⟨b, d , b⟩ is not a cycle:

9

graph terminology: (dis)connected, component

A graph is connected iff between every two distinct vertices there is
a path.
A graph is disconnected iff it is not connected.

Disconnected:

a b

c

d

e

Connected:

a b

c

d

e

Component: maximal subset of vertices reachable from each other.
(Sometimes also include their edges.)

E.g., the graph on the left has two components:

10

tree: definition and results

A tree is a graph that is connected and has no cycles.

Equivalently:

• between every two vertices, a unique simple path

• connected, but disconnected if any edge removed

• connected, and |E | = |V | − 1

• no cycles, but has a cycle if any edge added

• no cycles, and |E | = |V | − 1

Exercise: convince yourself that these are equivalent!

11

graph terminology: forest

A forest is a collection of trees (may be disconnected). A forest
has no cycles.

12

Breadth-First Search

Specify or arbitrarily pick a start vertex.

0. visit the start vertex

1. visit vertices 1 edge away from the above

2. visit unvisited vertices 1 edge away from the above

3. visit unvisited vertices 1 edge away from the above

4. . . .

A0

B

1

C

1

D

2

E

2

F

3

G

3

H

3

I 4

13

Breadth-First Search

0. start := pick a vertex

1. queue := new Queue()

2. queue.enqueue(start)

3. mark start as seen

// distance(start) = 0

4. while not queue.is_empty():

5. u := queue.dequeue()

6. for each v in u's adjacency list:

7. if v is not seen:

8. queue.enqueue(v)

9. mark v as seen

// edge {u,v} is a "breadth-first tree edge"

// u is v's "predecessor"

// distance(v) = distance(u) + 1

14

Breadth-First Search

breadth-first tree edge

A0

B

1

C

1

D

2

E

2

F

3

G

3

H

3

I 4

BFS finds:

• whether a vertex is reachable from start

• if yes, a shortest path and distance

• a tree consisting of the reachable vertices from start

• the component containing start

Shortest paths and the tree are non-unique:

15

Breadth-First Search

BFS running time:

1. we enqueue and dequeue each vertex once:
•

2. we consider each edge twice:
•

3. we find each vertex’s adjacency list once:
•

4. check v ’s “seen” status deg(v) times:
•

Assume Θ(1) time for

• marking/checking a vertex’s “seen” status

• finding a vertex’s adjacency list

Then BFS total time:

Exercise: What if the assumption doesn’t hold?

16

Depth-First Search

Specify or arbitrarily pick a start vertex.

0. visit the start vertex

1. choose one adjacent, unvisited vertex of the previous; visit it

2. choose one adjacent, unvisited vertex of the previous; visit it

3. . . .

4. whenever you have no choice, backtrack to the last time you
had a choice, choose another one

17

Depth-First Search

breadcrumb

u

u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u

u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u u

u

u

u

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u u

u

u

u

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u

u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u

u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; nothing to backtrack, the end.

18

Depth-First Search

0. mark all vertices white

1. time := 0

2. start := pick a vertex

3. DFS-visit(start)

4. DFS-visit(u):

5. discovery-time(u) := ++time

6. mark u gray

7. for each v in u's adjacency list:

8. if v is white:

// edge {u,v} is a depth-first tree edge

// predecessor(v) = u

9. DFS-visit(v)

10. mark u black

11. finish-time(u) := ++time

19

Depth-First Search

depth-first tree edge

DFS finds:

• whether a vertex is reachable from start

• a tree consisting of the reachable vertices from start

• the component containing start

• (with a small modification) whether a cycle exists

20

Depth-First Search

DFS running time:

1. we visit each vertex once:
•

2. we consider each edge twice:
•

3. we find each vertex’s adjacency list once:
•

4. check v ’s colour deg(v) times:
•

Assume Θ(1) time for

• marking/checking a vertex’s colour

• finding a vertex’s adjacency list

Then DFS total time:

Exercise: What if the assumption doesn’t hold?

21

cycle detection

During DFS, if something like this happens:

breadcrumbu

When u has an edge to a gray vertex that is not its predecessor.

Then it must be because. . . you have found a cycle.

Conversely, if this never happens, there is no cycle. (Harder to
prove.)

22

cycle detection

0. mark all vertices white

1. for each vertex s:

2. if s is white:

3. if has-cycle(s): return True

4. return False

5. has-cycle(u):

6. mark u gray

7. for each v in u's adjacency list:

8. if v is white:

9. predecessor(v) = u

10. if has-cycle(v): return True

11. elif v is gray and v is not predecessor(u):

12. return True

13. mark u black

14. return False
23

cycle detection: example

a b c d

e f g h

24

directed graph

A directed graph G is a pair (V ,E) of:

• V — a set of vertices

• E — a set of edges, where an edge is a pair of vertices
(usually, we disallow edges from a vertex to itself)

Each edge specifies one direction.
(a, b) lets you go from a to b, if present.
(b, a) lets you go from b to a, if present.

Many definitions need small modifications.

25

storing a directed graph: adjacency lists

a b

c

d

e

adjacency list

a c
b a, d
c b
d b
e

“c is adjacent to a”, but not “a is adjacent to c”.

26

directed graph: modified definitions

• out-degree: how many edges go out of a vertex
in-degree: how many edges go into a vertex
degree: out-degree + in-degree

• path, reachable: must comply with edge directions
path ⟨v0, . . . , vk⟩ requires (v0, v1) ∈ E , . . . , (vk−1, vk) ∈ E

• cycle: must comply with edge directions
cycle ⟨v0, . . . , vk−1, v0⟩ requires (v0, v1) ∈ E , . . . ,
(vk−1, v0) ∈ E
Note: ⟨b, d , b⟩ is a simple cycle this time: (b, d) and (d , b)
are two different edges.

• BFS, DFS: no change needed because:
•

27

directed graph: BFS/DFS

BFS/DFS depend on the choice of the start vertex:

a

b

c

d

e

• will visit every vertex if start at:

• will not visit every vertex if start at:

(Unlike in undirected graphs.)

28

directed graph: cycle detection

If something like this happens:

breadcrumb

u

OR

u

• if we encounter an edge to a gray vertex, then

•
Different from undirected graphs.

29

directed graph: cycle detection

0. mark all vertices white

1. for each vertex s:

2. if s is white:

3. if has-cycle(s): return True

4. return False

5. has-cycle(u):

6. mark u gray

7. for each v in u's adjacency list:

8. if v is white:

9. if has-cycle(v): return True

10. elif v is gray:

11. return True

12. mark u black

13. return False

30

