Depth-First Search

Specify or arbitrarily pick a start vertex.
0 . visit the start vertex

1. choose one adjacent, unvisited vertex of the previous; visit it
2. choose one adjacent, unvisited vertex of the previous; visit it 3.
3. whenever you have no choice, backtrack to the last time you had a choice, choose another one

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) choose an adjacent, unvisited vertex to visit

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.) no adjacent, unvisited vertex; backtrack

Depth-First Search

(White: unvisited. Gray: in progress. Black: done.)
no adjacent, unvisited vertex; nothing to backtrack, the end.

Depth-First Search

O. mark all vertices white

1. time $:=0$
2. start := pick a vertex
3. DFS-visit(start)
4. DFS-visit(u):
5. discovery-time(u) := ++time
6. mark u gray
7. for each v in u 's adjacency list:
8. if v is white:
// edge $\{u, v\}$ is a depth-first tree edge // predecessor (v) = u
9. DFS-visit(v)
10. mark u black
11. finish-time(u) := ++time

Depth-First Search

DFS finds:

- whether a vertex is reachable from start
- a tree consisting of the reachable vertices from start
- the component containing start
- (with a small modification) whether a cycle exists

Depth-First Search

DFS running time:

1. we visit each vertex once:

- only visit white vertices; mark gray when visit

2. we consider each edge twice:

- each edge incident on 2 vertices

3. we find each vertex's adjacency list once:

- right after mark gray (line 7)

4. check v 's colour $\operatorname{deg}(v)$ times:

- once from every node adjacent to it (line 8)

Assume $\Theta(1)$ time for

- marking/checking a vertex's colour
- finding a vertex's adjacency list

Then DFS total time: $\Theta(|V|+|E|)$.
Exercise: What if the assumption doesn't hold?

cycle detection

During DFS, if something like this happens:

—— breadcrumb

When u has an edge to a gray vertex that is not its predecessor.
Then it must be because. . . you have found a cycle.
Conversely, if this never happens, there is no cycle. (Harder to prove.)

cycle detection

0. mark all vertices white
1. for each vertex s:
2. if s is white:
3. if has-cycle(s): return True
4. return False
5. has-cycle(u):
6. mark u gray
7. for each v in u's adjacency list:
8. if v is white:
9. predecessor(v) = u
10. if has-cycle(v): return True
11. elif v is gray and v is not predecessor(u):
12. return True
13. mark u black
14. return False

cycle detection: example

directed graph

A directed graph G is a pair (V, E) of:

- V - a set of vertices
- E - a set of edges, where an edge is a pair of vertices (usually, we disallow edges from a vertex to itself)

Each edge specifies one direction.
(a, b) lets you go from a to b, if present.
(b, a) lets you go from b to a, if present.
Many definitions need small modifications.

storing a directed graph: adjacency lists

	adjacency list
a	c
b	a, d
c	b
d	b
e	

" c is adjacent to a ", but not " a is adjacent to c ".

directed graph: modified definitions

- out-degree: how many edges go out of a vertex in-degree: how many edges go into a vertex degree: out-degree + in-degree
- path, reachable: must comply with edge directions path $\left\langle v_{0}, \ldots, v_{k}\right\rangle$ requires $\left(v_{0}, v_{1}\right) \in E, \ldots,\left(v_{k-1}, v_{k}\right) \in E$
- cycle: must comply with edge directions cycle $\left\langle v_{0}, \ldots, v_{k-1}, v_{0}\right\rangle$ requires $\left(v_{0}, v_{1}\right) \in E, \ldots$, $\left(v_{k-1}, v_{0}\right) \in E$
Note: $\langle b, d, b\rangle$ is a simple cycle this time: (b, d) and (d, b) are two different edges.
- BFS, DFS: no change needed because:
- "for each v in u 's adjacency list" already complies with edge direction (u, v)

directed graph: BFS/DFS

BFS/DFS depend on the choice of the start vertex:

- will visit every vertex if start at: a, b, c
- will not visit every vertex if start at: d, e (Unlike in undirected graphs.)

directed graph: cycle detection

If something like this happens:

OR

\longrightarrow breadcrumb

- if we encounter an edge to a gray vertex, then
- we found a cycle, even if the vertex is u 's predecessor

Different from undirected graphs.

directed graph: cycle detection

0. mark all vertices white
1. for each vertex s:
2. if s is white:
3. if has-cycle(s): return True
4. return False
5. has-cycle(u):
6. mark u gray
7. for each v in u's adjacency list:
8. if v is white:
9. if has-cycle(v): return True
10. elif v is gray:
11. return True
12. mark u black
13. return False
