
Depth-First Search

Specify or arbitrarily pick a start vertex.

0. visit the start vertex

1. choose one adjacent, unvisited vertex of the previous; visit it

2. choose one adjacent, unvisited vertex of the previous; visit it

3. . . .

4. whenever you have no choice, backtrack to the last time you
had a choice, choose another one

17

Depth-First Search

breadcrumb

u

u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u

u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u u

u

u

u

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u u

u

u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

choose an adjacent, unvisited vertex to visit

18

Depth-First Search

breadcrumb

u u u

u u

u

u

u

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u

u

u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; backtrack

18

Depth-First Search

breadcrumb

u

u u

u u

u

uu

(White: unvisited. Gray: in progress. Black: done.)

no adjacent, unvisited vertex; nothing to backtrack, the end.

18

Depth-First Search

0. mark all vertices white

1. time := 0

2. start := pick a vertex

3. DFS-visit(start)

4. DFS-visit(u):

5. discovery-time(u) := ++time

6. mark u gray

7. for each v in u's adjacency list:

8. if v is white:

// edge {u,v} is a depth-first tree edge

// predecessor(v) = u

9. DFS-visit(v)

10. mark u black

11. finish-time(u) := ++time

19

Depth-First Search

depth-first tree edge

DFS finds:

• whether a vertex is reachable from start

• a tree consisting of the reachable vertices from start

• the component containing start

• (with a small modification) whether a cycle exists

20

Depth-First Search

DFS running time:

1. we visit each vertex once:
• only visit white vertices; mark gray when visit

2. we consider each edge twice:
• each edge incident on 2 vertices

3. we find each vertex’s adjacency list once:
• right after mark gray (line 7)

4. check v ’s colour deg(v) times:
• once from every node adjacent to it (line 8)

Assume Θ(1) time for

• marking/checking a vertex’s colour

• finding a vertex’s adjacency list

Then DFS total time: Θ(|V |+ |E |).

Exercise: What if the assumption doesn’t hold?

21

cycle detection

During DFS, if something like this happens:

breadcrumbu

When u has an edge to a gray vertex that is not its predecessor.

Then it must be because. . . you have found a cycle.

Conversely, if this never happens, there is no cycle. (Harder to
prove.)

22

cycle detection

0. mark all vertices white

1. for each vertex s:

2. if s is white:

3. if has-cycle(s): return True

4. return False

5. has-cycle(u):

6. mark u gray

7. for each v in u's adjacency list:

8. if v is white:

9. predecessor(v) = u

10. if has-cycle(v): return True

11. elif v is gray and v is not predecessor(u):

12. return True

13. mark u black

14. return False
23

cycle detection: example

a b c d

e f g h

24

directed graph

A directed graph G is a pair (V ,E) of:

• V — a set of vertices

• E — a set of edges, where an edge is a pair of vertices
(usually, we disallow edges from a vertex to itself)

Each edge specifies one direction.
(a, b) lets you go from a to b, if present.
(b, a) lets you go from b to a, if present.

Many definitions need small modifications.

25

storing a directed graph: adjacency lists

a b

c

d

e

adjacency list

a c
b a, d
c b
d b
e

“c is adjacent to a”, but not “a is adjacent to c”.

26

directed graph: modified definitions

• out-degree: how many edges go out of a vertex
in-degree: how many edges go into a vertex
degree: out-degree + in-degree

• path, reachable: must comply with edge directions
path ⟨v0, . . . , vk⟩ requires (v0, v1) ∈ E , . . . , (vk−1, vk) ∈ E

• cycle: must comply with edge directions
cycle ⟨v0, . . . , vk−1, v0⟩ requires (v0, v1) ∈ E , . . . ,
(vk−1, v0) ∈ E
Note: ⟨b, d , b⟩ is a simple cycle this time: (b, d) and (d , b)
are two different edges.

• BFS, DFS: no change needed because:
• “for each v in u’s adjacency list” already complies with edge

direction (u, v)

27

directed graph: BFS/DFS

BFS/DFS depend on the choice of the start vertex:

a

b

c

d

e

• will visit every vertex if start at: a, b, c

• will not visit every vertex if start at: d , e

(Unlike in undirected graphs.)

28

directed graph: cycle detection

If something like this happens:

breadcrumb

u

OR

u

• if we encounter an edge to a gray vertex, then

• we found a cycle, even if the vertex is u’s predecessor

Different from undirected graphs.

29

directed graph: cycle detection

0. mark all vertices white

1. for each vertex s:

2. if s is white:

3. if has-cycle(s): return True

4. return False

5. has-cycle(u):

6. mark u gray

7. for each v in u's adjacency list:

8. if v is white:

9. if has-cycle(v): return True

10. elif v is gray:

11. return True

12. mark u black

13. return False

30

