
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1

introduction

• cities and highways between them

• computers and network cables between them

• people and relationships

• in a board game: a state and legal moves to other states

a b

c

d

e

a graph

2

undirected graph

a b

c

d

e

An undirected graph is a pair (V ,E) of:

• V : a set of vertices (above: {a, b, c , d , e})
• E : a set of edges, where an edge is a pair of vertices
(above: {{a, c}, {a, b}, {b, c}, {b, d}})
(usually, no edge from a vertex to itself)
undirected graph — no direction specified, bidirectional

3

graph terminology: incident, endpoint, degree

Edge incident on vertex, vertex is an endpoint of edge: e.g.,
{a, c} is incident on a; a is an endpoint of {a, c}
{a, c} is incident on c ; c is an endpoint of {a, c}
{a, c} is not incident on b; b is not an endpoint of {a, c}

Degree of vertex: how many edges are incident on it.

a b

c

d

e

vertex a b c d e

degree 2 3 2 1 0

4

graph terminology: adjacent

Two vertices are adjacent iff there is an edge between them.

a b

c

d

e

a b c d e

a
√ √

b
√ √ √

c
√ √

d
√

e

is adjacent to

a b, c
b a, c , d
c a, b
d b
e

5

storing a graph: adjacency matrix

a b

c

d

e

a b c d e

a
√ √

b
√ √ √

c
√ √

d
√

e

Adjacency matrix = store this in a 2D array
Let n = |V | and m = |E |. Then in terms of n and m:

• space: Θ(n2)

• “who are adjacent to v?” time: Θ(n)

• “are v and w adjacent?” time: Θ(1)

6

storing a graph: adjacency lists

a b

c

d

e

is adjacent to

a b, c
b a, c , d
c a, b
d b
e

Adjacency lists = store this in a 1D array or dictionaryUse a list or
a set for each entry on the right.
Let n = |V | and m = |E |. Then in terms of n, m, and degree(v):

• space: Θ(n +m)

• “who are adjacent to v?” time: Θ(deg(v))

• “are v and w adjacent?” time: Θ(deg(v))

• optimal for graph searches

7

graph terminology: (simple) path, reachable

A (simple) path is a non-empty sequence of vertices in which

• consecutive vertices are adjacent

• vertices are distinct

a b

c

d

e

⟨d⟩ is a path, length 0.
⟨d , b, c⟩ is a path, length 2.
⟨d , b, c , b⟩ is a not a (simple) path.
⟨d , a, b⟩ is not a path.

v is reachable from u iff there is a path from u to v .

8

graph terminology: (simple) cycle

A (simple) cycle is a non-empty sequence of vertices in which

• consecutive vertices are adjacent

• first vertex = last vertex

• vertices are distinct except first=last; edges used are distinct

• ⟨v⟩ is not a cycle

a b

c

d

e

⟨b, c , a, b⟩ is a simple cycle, length 3. (⟨b, c , a⟩ in some books.)
⟨b, c , a, b, d , e, b⟩ is not a (simple) cycle: uses b in the middle
⟨b, d , b⟩ is not a cycle: it uses {b, d} twice

9

graph terminology: (dis)connected, component

A graph is connected iff between every two distinct vertices there is
a path.
A graph is disconnected iff it is not connected.

Disconnected:

a b

c

d

e

Connected:

a b

c

d

e

Component: maximal subset of vertices reachable from each other.
(Sometimes also include their edges.)

E.g., the graph on the left has two components: {a, b, c , d}, {e}

10

tree: definition and results

A tree is a graph that is connected and has no cycles.

Equivalently:

• between every two vertices, a unique simple path

• connected, but disconnected if any edge removed

• connected, and |E | = |V | − 1

• no cycles, but has a cycle if any edge added

• no cycles, and |E | = |V | − 1

Exercise: convince yourself that these are equivalent!

11

graph terminology: forest

A forest is a collection of trees (may be disconnected). A forest
has no cycles.

12

Breadth-First Search

Specify or arbitrarily pick a start vertex.

0. visit the start vertex

1. visit vertices 1 edge away from the above

2. visit unvisited vertices 1 edge away from the above

3. visit unvisited vertices 1 edge away from the above

4. . . .

A0

B

1

C

1

D

2

E

2

F

3

G

3

H

3

I 4

13

Breadth-First Search

0. start := pick a vertex

1. queue := new Queue()

2. queue.enqueue(start)

3. mark start as seen

// distance(start) = 0

4. while not queue.is_empty():

5. u := queue.dequeue()

6. for each v in u's adjacency list:

7. if v is not seen:

8. queue.enqueue(v)

9. mark v as seen

// edge {u,v} is a "breadth-first tree edge"

// u is v's "predecessor"

// distance(v) = distance(u) + 1

14

Breadth-First Search

breadth-first tree edge

A0

B

1

C

1

D

2

E

2

F

3

G

3

H

3

I 4

BFS finds:

• whether a vertex is reachable from start

• if yes, a shortest path and distance

• a tree consisting of the reachable vertices from start

• the component containing start

Shortest paths and the tree are non-unique: sensitive to orders of
vertices in adjacency lists.

15

Breadth-First Search

BFS running time:

1. we enqueue and dequeue each vertex once:
• only enqueue unseen vertices; mark as seen right after enqueue

2. we consider each edge twice:
• each edge incident on 2 vertices

3. we find each vertex’s adjacency list once:
• right after dequeue (line 6)

4. check v ’s “seen” status deg(v) times:
• once from every node adjacent to it (line 7)

Assume Θ(1) time for

• marking/checking a vertex’s “seen” status

• finding a vertex’s adjacency list

Then BFS total time: Θ(|V |+ |E |).

Exercise: What if the assumption doesn’t hold?

16

