CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai

introduction

cities and highways between them
computers and network cables between them
people and relationships

in a board game: a state and legal moves to other states

undirected graph

€ ©

o

An undirected graph is a pair (V, E) of:
® V: a set of vertices (above: {a,b,c,d,e})
® F: a set of edges, where an edge is a pair of vertices

(above: {{a,c},{a,b},{b,c},{b,d}})
(usually, no edge from a vertex to itself)
undirected graph — no direction specified, bidirectional

graph terminology: incident, endpoint, degree

Edge incident on vertex, vertex is an endpoint of edge: e.g.,
{a, ¢} is incident on a; a is an endpoint of {a, c}

{a, c} is incident on c; c is an endpoint of {a, c}

{a, ¢} is not incident on b; b is not an endpoint of {a, c}

Degree of vertex: how many edges are incident on it.

©,
()

b d
3 1

vertex | a
degree | 2

c e
2 0

graph terminology: adjacent

Two vertices are adjacent iff there is an edge between them.

&

a

d

e

oD Q 060 T w

J
Vv

LG T

v
v

v

©

is adjacent to

D Q 60 T W

b, c
a, c d
a, b
b

storing a graph: adjacency matrix

Q.

<0
<

VAN
)

o QN0 T
<<
<L T

Adjacency matrix = store this in a 2D array
Let n=|V| and m = |E|. Then in terms of n and m:

® space: O(n?)
® “who are adjacent to v?" time: ©(n)

® “are v and w adjacent?” time: ©(1)

storing a graph: adjacency lists

is adjacent to

albc
@ b|ac d
clab
d| b
2——(b)—(a) ’

Adjacency lists = store this in a 1D array or dictionaryUse a list or
a set for each entry on the right.
Let n=|V| and m = |E|. Then in terms of n, m, and degree(v):

® space: ©(n+ m)

® “who are adjacent to v?" time: ©(deg(v))
e “are v and w adjacent?" time: ©(deg(v))
® optimal for graph searches

graph terminology: (simple) path, reachable

A (simple) path is a non-empty sequence of vertices in which
® consecutive vertices are adjacent

® vertices are distinct
(d) is a path, length 0.
(d, b, c) is a path, length 2.
(d
(d

, b, c, b) is a not a (simple) path.
,a, b) is not a path.

<

is reachable from u iff there is a path from u to v.

graph terminology: (simple) cycle

A (simple) cycle is a non-empty sequence of vertices in which

® consecutive vertices are adjacent
® first vertex = last vertex

® vertices are distinct except first=last; edges used are distinct

(v) is not a cycle
(b, c,a,b) is a simple cycle, length 3. ((b, c,a) in some books.)

(b,c,a,b,d, e, b) is not a (simple) cycle: uses b in the middle
(b,d, b) is not a cycle: it uses {b, d} twice

graph terminology: (dis)connected, component

A graph is connected iff between every two distinct vertices there is
a path.
A graph is disconnected iff it is not connected.

Disconnected: Connected:

©

—)—) ()¢
Component: maximal subset of vertices reachable from each other.
(Sometimes also include their edges.)

E.g., the graph on the left has two components: {a, b, c,d}, {e}

10

tree: definition and results

A tree is a graph that is connected and has no cycles.

Equivalently:

between every two vertices, a unique simple path
connected, but disconnected if any edge removed
connected, and |E| = |V| -1

no cycles, but has a cycle if any edge added

no cycles, and |E| = |V| -1

Exercise: convince yourself that these are equivalent!

11

graph terminology: forest

A forest is a collection of trees (may be disconnected). A forest

has no cycles.

Breadth-First Search

Specify or arbitrarily pick a start vertex.

0.

L=

visit the start vertex

visit vertices 1 edge away from the above

visit unvisited vertices 1 edge away from the above
visit unvisited vertices 1 edge away from the above

13

w N = O

© 00 N O O

Breadth-First Search

start := pick a vertex

. queue := new Queue()
. queue.enqueue(start)
. mark start as seen

// distance(start) = 0

. while not queue.is_empty(Q):

u := queue.dequeue()
for each v in u's adjacency list:
if v is not seen:
queue . enqueue (v)
mark v as seen
// edge {u,v} is a "breadth-first tree edge"
// u is v's "predecessor"
// distance(v) = distance(u) + 1

14

Breadth-First Search

BFS finds:

® whether a vertex is reachable from start

if yes, a shortest path and distance
® 3 tree consisting of the reachable vertices from start
® the component containing start

Shortest paths and the tree are non-unique: sensitive to orders of
vertices in adjacency lists.

15

Breadth-First Search

BFS running time:
1. we enqueue and dequeue each vertex once:
® only enqueue unseen vertices; mark as seen right after enqueue

2. we consider each edge twice:
® cach edge incident on 2 vertices

3. we find each vertex's adjacency list once:
® right after dequeue (line 6)
4. check v's “seen” status deg(v) times:
® once from every node adjacent to it (line 7)
Assume ©(1) time for
® marking/checking a vertex's “seen” status
e finding a vertex's adjacency list
Then BFS total time: ©(|V| + |E]).

Exercise: What if the assumption doesn't hold?

16

