CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

introduction

- cities and highways between them
- computers and network cables between them
- people and relationships
- in a board game: a state and legal moves to other states

undirected graph

An undirected graph is a pair (V, E) of:

- V : a set of vertices (above: $\{a, b, c, d, e\}$)
- E : a set of edges, where an edge is a pair of vertices (above: $\{\{a, c\},\{a, b\},\{b, c\},\{b, d\}\}$) (usually, no edge from a vertex to itself) undirected graph - no direction specified, bidirectional

graph terminology: incident, endpoint, degree

Edge incident on vertex, vertex is an endpoint of edge: e.g., $\{a, c\}$ is incident on $a ; a$ is an endpoint of $\{a, c\}$
$\{a, c\}$ is incident on $c ; c$ is an endpoint of $\{a, c\}$
$\{a, c\}$ is not incident on $b ; b$ is not an endpoint of $\{a, c\}$
Degree of vertex: how many edges are incident on it.

graph terminology: adjacent

Two vertices are adjacent iff there is an edge between them.

storing a graph: adjacency matrix

	a	b	c	d	e
a		$\sqrt{ }$	$\sqrt{ }$		
b	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	
c	$\sqrt{ }$	$\sqrt{ }$			
d		$\sqrt{ }$			
e					

Adjacency matrix $=$ store this in a 2D array Let $n=|V|$ and $m=|E|$. Then in terms of n and m :

- space: $\Theta\left(n^{2}\right)$
- "who are adjacent to v ?" time: $\Theta(n)$
- "are v and w adjacent?" time: $\Theta(1)$

storing a graph: adjacency lists

	is adjacent to
a	b, c
b	a, c, d
c	a, b
d	b
e	

Adjacency lists = store this in a 1D array or dictionaryUse a list or a set for each entry on the right.
Let $n=|V|$ and $m=|E|$. Then in terms of n, m, and degree (v) :

- space: $\Theta(n+m)$
- "who are adjacent to v ?" time: $\Theta(\operatorname{deg}(v))$
- "are v and w adjacent?" time: $\Theta(\operatorname{deg}(v))$
- optimal for graph searches

graph terminology: (simple) path, reachable

A (simple) path is a non-empty sequence of vertices in which

- consecutive vertices are adjacent
- vertices are distinct

$\langle d\rangle$ is a path, length 0.
$\langle d, b, c\rangle$ is a path, length 2.
$\langle d, b, c, b\rangle$ is a not a (simple) path.
$\langle d, a, b\rangle$ is not a path.
v is reachable from u iff there is a path from u to v.

graph terminology: (simple) cycle

A (simple) cycle is a non-empty sequence of vertices in which

- consecutive vertices are adjacent
- first vertex = last vertex
- vertices are distinct except first=last; edges used are distinct
- $\langle v\rangle$ is not a cycle

$\langle b, c, a, b\rangle$ is a simple cycle, length 3. ($\langle b, c, a\rangle$ in some books.) $\langle b, c, a, b, d, e, b\rangle$ is not a (simple) cycle: uses b in the middle $\langle b, d, b\rangle$ is not a cycle: it uses $\{b, d\}$ twice

graph terminology: (dis)connected, component

A graph is connected iff between every two distinct vertices there is a path.
A graph is disconnected iff it is not connected.

Disconnected:

Connected:

Component: maximal subset of vertices reachable from each other. (Sometimes also include their edges.)
E.g., the graph on the left has two components: $\{a, b, c, d\},\{e\}$

tree: definition and results

A tree is a graph that is connected and has no cycles.
Equivalently:

- between every two vertices, a unique simple path
- connected, but disconnected if any edge removed
- connected, and $|E|=|V|-1$
- no cycles, but has a cycle if any edge added
- no cycles, and $|E|=|V|-1$

Exercise: convince yourself that these are equivalent!

graph terminology: forest

A forest is a collection of trees (may be disconnected). A forest has no cycles.

Breadth-First Search

Specify or arbitrarily pick a start vertex.
0 . visit the start vertex

1. visit vertices 1 edge away from the above
2. visit unvisited vertices 1 edge away from the above
3. visit unvisited vertices 1 edge away from the above
4. ...

Breadth-First Search

0. start := pick a vertex
1. queue $:=$ new Queue()
2. queue.enqueue (start)
3. mark start as seen
// distance(start) $=0$
4. while not queue.is_empty():
5. u := queue.dequeue()
6. for each v in u 's adjacency list:
7. if v is not seen:
8. queue.enqueue (v)
9. mark v as seen
// edge $\{u, v\}$ is a "breadth-first tree edge"
// u is v's "predecessor"
// distance(v) = distance(u) + 1

Breadth-First Search

BFS finds:

- whether a vertex is reachable from start
- if yes, a shortest path and distance
- a tree consisting of the reachable vertices from start
- the component containing start

Shortest paths and the tree are non-unique: sensitive to orders of vertices in adjacency lists.

Breadth-First Search

BFS running time:

1. we enqueue and dequeue each vertex once:

- only enqueue unseen vertices; mark as seen right after enqueue

2. we consider each edge twice:

- each edge incident on 2 vertices

3. we find each vertex's adjacency list once:

- right after dequeue (line 6)

4. check v 's "seen" status $\operatorname{deg}(v)$ times:

- once from every node adjacent to it (line 7)

Assume $\Theta(1)$ time for

- marking/checking a vertex's "seen" status
- finding a vertex's adjacency list

Then BFS total time: $\Theta(|V|+|E|)$.
Exercise: What if the assumption doesn't hold?

