CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹based on notes by Anna Bretscher and Albert Lai

Weight-balanced Binary Search Trees

Another way to keep a BST balanced: a <u>weight-balanced</u> BST. Idea: at every node n:

or

where
$$weight(n) = size(n) + 1$$

Equivalently,

weight(n.left)
$$\leq$$
 weight(n.right) \times 3
weight(n.right) \leq weight(n.left) \times 3

 $\boldsymbol{Q}.$ How should we augment the tree?

Α.

WBT example

Rotations again!

Case 1: v is right-heavy; single counter-clockwise rotation works

Q. When exactly is *v* right heavy? **A**.

Case 1: v is right-heavy; single counter-clockwise rotation works

Q. For a single rotation to work, what should be true about x? **A**.

Show why $weight(x.left) < weight(x.right) \times 2$ is a sufficient condition.

Show why $weight(x.left) < weight(x.right) \times 2$ is a sufficient condition.

What if

- weight(v.right) > weight(v.left) × 3 and
- weight(v.right.left) ≥ weight(v.right.right) × 2?

Double rotation.

Case 2: v is right-heavy; need a double rotation: clockwise then counter-clockwise

- $weight(x) > weight(R) \times 3$
- $weight(S) \ge weight(T) \times 2$

- S was too big: we split it
- convince yourself that v, x, and w are balanced (even longer proof)

Case 3: v is left-heavy; single clockwise rotation works

- weight(v.left) > weight(v.right) × 3 and
- weight(x.right) < weight(x.left) × 2
- argument is symmetric to Case 1

Case 4: v is left-heavy; need a double rotation: counter-clockwise then clockwise

- weight(v.left) > weight(v.right) × 3 and
- $weight(x.right) \ge weight(x.left) \times 2$
- argument is symmetric to Case 2

For each node v on the path from new/deleted node back to root:

```
if weight(v.right) > weight(v.left) * 3:
  let x = v.right
  if weight(x.left) < weight(x.right) * 2:</pre>
    single rotation: counter-clockwise
  else:
    double rotation: clockwise then counter-clockwise
else if weight(v.left) > weight(v.right) * 3:
  let x = v.left
  if weight(x.right) < weight(x.left) * 2:</pre>
    single rotation: clockwise
  else:
```

double rotation: counter-clockwise then clockwise else:

no rotation

WBT insert

Assuming the height of the weight-balanced tree is $\mathcal{O}(\log n)$,

- 1. insert as in BST
- 2. check and fix balance, update size from parent of new node up to root
 - complexity:

WBT delete

Assuming the height of the weight-balanced tree is $\mathcal{O}(\log n)$,

- 1. find which node has the key, call it w
 - complexity:
- 2. if w is a leaf, remove it
 - complexity:
- 3. if w has one child, w's parent adopts that child
 - complexity:
- 4. else:
 - 4.1 go to successor node (complexity:
 - 4.2 replace key of node with successor key
 - complexity:
 - 4.3 successor's parent adopts successor's right child
 - complexity:
- 5. from parent node to root: check and fix balance, update size
 - complexity:

WBT union

Recall the algorithm to compute union of AVL trees T_1 and T_2 :

```
if T_1 == nil:
    return T_2
if T_2 == nil:
    return T_1
k = T_2.key
(L, R) = split(T_1, k)
L' = union(L, T_2.left)
R' = union(R, T_2.right)
return join(L', k, R')
```

What needs to change for WBTs?

WBT union

Need to change the algorithm for join(L, k, G):

```
if height(L) - height(G) > 1:
 p = L
 while height(p.right) - height(G) > 1:
   p = p.right
 q = new node(key=k, left=p.right, right=G)
 p.right = q
 rebalance and update heights at p up to the root
 return I.
elif height(G) - height(L) > 1:
  ... symmetrical ...
else:
```

```
return new node(key=k, left=L, right=G)
```

WBT union

New algorithm for join(L, k, G):

WBT union -join(L, k, G)

In L, keep going to the right until find node p:

- weight(p) > weight(G) × 3
- weight(p.right) \leq weight(G) \times 3

Create new node q with key k, left child p.right, right child G. This node is balanced. (Why?)

p and ancestors may need rebalancing.

Height of the WBT

Claim:

$$height(T) \leq \log(size(T) + 1) / \log(4/3)$$

for all weight-balanced trees T.

Proof. By induction on size of the tree.

Base.

IH. Suppose $\forall k \in \mathbb{N}, 0 \le k < n$, $height(T') \le \log(k+1)/\log(4/3)$ where size(T') = k.

Show. $height(T) \leq \log(n+1)/\log(4/3)$ where size(T) = n.

Height of the WBT

Show. $height(T) \leq \log(n+1)/\log(4/3)$ where size(T) = n.

Height of the WBT

Show. $height(T) \leq \log(n+1)/\log(4/3)$ where size(T) = n.