
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1



Weight-balanced Binary Search Trees

Another way to keep a BST balanced: a weight-balanced BST.

Idea: at every node n:

1

3
≤ size(n.left) + 1

size(n.right) + 1
≤ 3

or
1

3
≤ weight(n.left)

weight(n.right)
≤ 3

where weight(n) = size(n) + 1

Equivalently,

weight(n.left) ≤ weight(n.right)× 3

weight(n.right) ≤ weight(n.left)× 3

Q. How should we augment the tree?

A.
2



WBT example

44

17 51

62

78

44

17 51

62

78

80

3



WBT rebalance

44

17 51

62

78

80

Rotations again!

4



WBT rebalance

Case 1: v is right-heavy; single counter-clockwise rotation works

v

R x

S T

x

v

R S

T

Q. When exactly is v right heavy?

A.

5



WBT rebalance

Case 1: v is right-heavy; single counter-clockwise rotation works

v

R x

S T

x

v

R S

T

Q. For a single rotation to work, what should be true about x?

A.

6



WBT rebalance

Show why weight(x .left) < weight(x .right)× 2 is a sufficient
condition.

7



WBT rebalance

Show why weight(x .left) < weight(x .right)× 2 is a sufficient
condition.

8



WBT rebalance

What if

• weight(v .right) > weight(v .left)× 3 and

• weight(v .right.left) ≥ weight(v .right.right)× 2?

15

30

20

25

Double rotation.

9



WBT rebalance

Case 2: v is right-heavy; need a double rotation: clockwise then
counter-clockwise

• weight(x) > weight(R)× 3

• weight(S) ≥ weight(T )× 2

v

R x

S T

v

R x

w

S1 S2

T

• S was too big: we split it

• convince yourself that v , x , and w are balanced (even longer
proof)

10



WBT rebalance

Case 3: v is left-heavy; single clockwise rotation works

v

x

T S

R

• weight(v .left) > weight(v .right)× 3 and

• weight(x .right) < weight(x .left)× 2

• argument is symmetric to Case 1

11



WBT rebalance

Case 4: v is left-heavy; need a double rotation: counter-clockwise
then clockwise

v

x

T w

S1 S2

R

• weight(v .left) > weight(v .right)× 3 and

• weight(x .right) ≥ weight(x .left)× 2

• argument is symmetric to Case 2

12



WBT rebalance

For each node v on the path from new/deleted node back to root:

if weight(v.right) > weight(v.left) * 3:

let x = v.right

if weight(x.left) < weight(x.right) * 2:

single rotation: counter-clockwise

else:

double rotation: clockwise then counter-clockwise

else if weight(v.left) > weight(v.right) * 3:

let x = v.left

if weight(x.right) < weight(x.left) * 2:

single rotation: clockwise

else:

double rotation: counter-clockwise then clockwise

else:

no rotation

13



WBT insert

Assuming the height of the weight-balanced tree is O(log n),

1. insert as in BST

2. check and fix balance, update size from parent of new node
up to root

• complexity:

14



WBT delete

Assuming the height of the weight-balanced tree is O(log n),

1. find which node has the key, call it w
• complexity:

2. if w is a leaf, remove it
• complexity:

3. if w has one child, w ’s parent adopts that child
• complexity:

4. else:

4.1 go to successor node (complexity:
4.2 replace key of node with successor key

• complexity:

4.3 successor’s parent adopts successor’s right child
• complexity:

5. from parent node to root: check and fix balance, update size
• complexity:

15



WBT union

Recall the algorithm to compute union of AVL trees T1 and T2:

if T_1 == nil:

return T_2

if T_2 == nil:

return T_1

k = T_2.key

(L, R) = split(T_1, k)

L' = union(L, T_2.left)

R' = union(R, T_2.right)

return join(L', k, R')

What needs to change for WBTs?

16



WBT union

Need to change the algorithm for join(L, k,G ):

if height(L) - height(G) > 1:

p = L

while height(p.right) - height(G) > 1:

p = p.right

q = new node(key=k, left=p.right, right=G)

p.right = q

rebalance and update heights at p up to the root

return L

elif height(G) - height(L) > 1:

... symmetrical ...

else:

return new node(key=k, left=L, right=G)

17



WBT union

New algorithm for join(L, k ,G ):

18



WBT union — join(L, k ,G )

In L, keep going to the right until find node p:

• weight(p) > weight(G )× 3

• weight(p.right) ≤ weight(G )× 3

Create new node q with key k , left child p.right, right child G .
This node is balanced. (Why?)

p

R S

p and ancestors may need rebalancing.

19



Height of the WBT

Claim:

height(T ) ≤ log(size(T ) + 1)/ log(4/3)

for all weight-balanced trees T .

Proof. By induction on size of the tree.

Base.

IH. Suppose ∀k ∈ N, 0 ≤ k < n, height(T ′) ≤ log(k + 1)/ log(4/3)
where size(T ′) = k .

Show. height(T ) ≤ log(n + 1)/ log(4/3) where size(T ) = n.

20



Height of the WBT

Show. height(T ) ≤ log(n + 1)/ log(4/3) where size(T ) = n.

21



Height of the WBT

Show. height(T ) ≤ log(n + 1)/ log(4/3) where size(T ) = n.

22


