Height of the WBT

Claim:

$$
\operatorname{height}(T) \leq \log (\operatorname{size}(T)+1) / \log (4 / 3)
$$

for all weight-balanced trees T.
Proof. By induction on size of the tree.
Base. height $($ nil $)=0=\log (\operatorname{size}(n i l)+1) / \log (4 / 3)$
IH. Suppose $\forall k \in \mathbb{N}, 0 \leq k<n$, $\operatorname{height}\left(T^{\prime}\right) \leq \log (k+1) / \log (4 / 3)$ where $\operatorname{size}\left(T^{\prime}\right)=k$.

Show. height $(T) \leq \log (n+1) / \log (4 / 3)$ where $\operatorname{size}(T)=n$.

Height of the WBT

Show. height $(T) \leq \log (n+1) / \log (4 / 3)$ where $\operatorname{size}(T)=n$.
WLOG assume that height (T.left $) \leq$ height (T.right), thus $\operatorname{height}(T)=\operatorname{height}(T . r i g h t)+1$.
Let $(I, r)=(\operatorname{size}(T$.left $), \operatorname{size}(T$.right $))$.
Then

$$
\begin{aligned}
& \operatorname{size}(T)+1 \\
= & n+1 \\
= & I+r+1+1 \\
\geq & (r+1) / 3+r+1 \quad \quad \text { ssince } I+1 \geq(r+1) / 3] \\
= & (r+1) * 4 / 3 \\
\therefore & r+1 \leq(n+1) /(4 / 3)
\end{aligned}
$$

Height of the WBT

Show. height $(T) \leq \log (n+1) / \log (4 / 3)$ where $\operatorname{size}(T)=n$.

$$
\begin{aligned}
& \text { height }(T) \\
= & \text { height }(T . r i g h t)+1 \\
\leq & \log (r+1) / \log (4 / 3)+1 \\
\leq & \log ((n+1) /(4 / 3)) / \log (4 / 3)+1 \\
= & (\log (n+1)-\log (4 / 3)) / \log (4 / 3)+1 \\
= & \log (n+1) / \log (4 / 3)-1+1 \\
= & \log (n+1) / \log (4 / 3)
\end{aligned}
$$

