CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

Weight-balanced Binary Search Trees

Another way to keep a BST balanced: a weight-balanced BST. Idea: at every node n :

$$
\frac{1}{3} \leq \frac{\operatorname{size}(n . l e f t)+1}{\operatorname{size}(n . r i g h t)+1} \leq 3
$$

or

$$
\frac{1}{3} \leq \frac{\text { weight }(\text { n.left })}{\text { weight }(\text { n.right })} \leq 3
$$

where $\operatorname{weight}(n)=\operatorname{size}(n)+1$
Equivalently,

$$
\begin{aligned}
& \text { weight }(n . l e f t) \leq \text { weight }(n . r i g h t) \times 3 \\
& \text { weight }(n . r i g h t) \leq \text { weight }(n . l e f t) \times 3
\end{aligned}
$$

Q. How should we augment the tree?
A. Add a size field to each node.

WBT example

balanced unbalanced: node 51

WBT rebalance

Rotations again!

WBT rebalance

Case 1: v is right-heavy; single counter-clockwise rotation works

Q. When exactly is v right heavy?
A. weight $(x)>$ weight $(R) \times 3$, i.e.
weight $(v . r i g h t)>$ weight $(v . l e f t) \times 3$

WBT rebalance

Case 1: v is right-heavy; single counter-clockwise rotation works

Q. For a single rotation to work, what should be true about x ?
A. weight $(S)<\operatorname{weight}(T) \times 2$, i.e.
weight $(v . r i g h t . l e f t)<$ weight $(v . r i g h t . r i g h t) \times 2$

WBT rebalance

Show why weight $(x . l e f t)<$ weight $(x . r i g h t) \times 2$ is a sufficient condition.
Let $r=\operatorname{size}(R), s=\operatorname{size}(S), t=\operatorname{size}(T)$ at the time of the rotation. v is right-heavy, so either

- a node was added to x to cause imbalance, or
- a node was removed from R to cause imbalance.

Assumptions:

$$
\begin{aligned}
& s+1<2(t+1) \\
& 3(r+1)<s+t+2
\end{aligned}
$$

v is right-heavy (2)
Before addition, we had a WBT:

$$
\begin{array}{ll}
r+1 \leq 3(s+t+1) \text { and } s+t+1 \leq 3(r+1) & v \text { was balanced (3) } \\
t \leq 3(s+1) \text { and } s \leq 3(t+1) & x \text { was balanced }
\end{array}
$$

Show that after addition + rotation, we have a WBT:

$$
\begin{array}{ll}
r+s+2 \leq 3(t+1) \text { and } t+1 \leq 3(r+s+2) & x \text { is balabced } \\
r+1 \leq 3(s+1) \text { and } s+1 \leq 3(r+1) & v \text { is balabced }
\end{array}
$$

WBT rebalance

Show why weight $(x . l e f t)<$ weight $(x . r i g h t) \times 2$ is a sufficient condition.
Let $r=\operatorname{size}(R), s=\operatorname{size}(S), t=\operatorname{size}(T)$ at the time of the rotation. v is right-heavy, so either

- a node was added to x to cause imbalance, or
- a node was removed from R to cause imbalance.

Assumptions:

$$
\begin{align*}
& s+1<2(t+1) \tag{assumption 1}\\
& 3(r+1)<s+t+2
\end{align*}
$$

v is right-heavy (2)
Before removal, we had a WBT:

$$
\begin{array}{ll}
r+2 \leq 3(s+t+2) \text { and } s+t+2 \leq 3(r+2) & v \text { was balanced (3) } \\
s+1 \leq 3(t+1) \text { and } t+1 \leq 3(s+1) & x \text { was balanced 4 }
\end{array}
$$

Show that after removal + rotation, we have a WBT:

$$
\begin{array}{ll}
r+s+2 \leq 3(t+1) \text { and } t+1 \leq 3(r+s+2) & x \text { is balabced } \\
r+1 \leq 3(s+1) \text { and } s+1 \leq 3(r+1) & v \text { is balabced }
\end{array}
$$

WBT rebalance

What if

- weight $(v . r i g h t)>$ weight $(v . l e f t) \times 3$ and
- weight $(v . r i g h t . l e f t) \geq$ weight $(v . r i g h t . r i g h t) \times 2$?

Double rotation.

WBT rebalance

Case 2: v is right-heavy; need a double rotation: clockwise then counter-clockwise

- weight $(x)>$ weight $(R) \times 3$
- weight $(S) \geq$ weight $(T) \times 2$

$$
S_{1} \quad S_{2}
$$

- S was too big: we split it
- convince yourself that v, x, and w are balanced (even longer, but not more complex, proof)

WBT rebalance

Case 3: v is left-heavy; single clockwise rotation works

- weight $(v . l e f t)>$ weight $(v . r i g h t) \times 3$ and
- weight $(x . r i g h t)<$ weight $(x . l e f t) \times 2$
- argument is symmetric to Case 1

WBT rebalance

Case 4: v is left-heavy; need a double rotation: counter-clockwise then clockwise

- weight $(v . l e f t)>$ weight $(v . r i g h t) \times 3$ and
- weight $(x . r i g h t) \geq$ weight $(x$.left $) \times 2$
- argument is symmetric to Case 2

WBT rebalance

For each node v on the path from new/deleted node back to root:
if weight(v.right) > weight(v.left) * 3:
let $\mathrm{x}=\mathrm{v}$.right
if weight(x.left) < weight(x.right) * 2:
single rotation: counter-clockwise
else:
double rotation: clockwise then counter-clockwise else if weight(v.left) > weight(v.right) * 3:
let $\mathrm{x}=\mathrm{v}$.left
if weight(x.right) < weight(x.left) * 2:
single rotation: clockwise
else:
double rotation: counter-clockwise then clockwise else:
no rotation

WBT insert

Assuming the height of the weight-balanced tree is $\mathcal{O}(\log n)$,

1. insert as in BST
2. check and fix balance, update size from parent of new node up to root

- complexity: $\Theta(\log n)$

WBT delete

Assuming the height of the weight-balanced tree is $\mathcal{O}(\log n)$,

1. find which node has the key, call it w

- complexity: $\Theta(\log n)$ time

2. if w is a leaf, remove it

- complexity: $\Theta(1)$ time

3. if w has one child, w's parent adopts that child

- complexity: $\Theta(1)$ time

4. else:
4.1 go to successor node (complexity: $\Theta(\log n)$ time)
4.2 replace key of node with successor key

- complexity: $\Theta(1)$ time
4.3 successor's parent adopts successor's right child
- complexity: $\Theta(1)$ time

5. from parent node to root: check and fix balance, update size

- complexity: $\Theta(\log n)$ time

WBT union

Recall the algorithm to compute union of AVL trees T_{1} and T_{2} :
if $T_{-} 1$ == nil:
return T_2
if T_2 == nil:
return T_1
k = T_2.key
(L, R) = split(T_1, k)
$L^{\prime}=$ union(L, T_2.left)
R' = union(R, T_2.right)
return join(L', k, R')
What needs to change for WBTs?

WBT union

Need to change the algorithm for $\operatorname{join}(L, k, G)$:

```
if height(L) - height(G) > 1:
    p = L
    while height(p.right) - height(G) > 1:
        p = p.right
    q = new node(key=k, left=p.right, right=G)
    p.right = q
    rebalance and update heights at \(p\) up to the root
    return L
elif height(G) - height(L) > 1:
    ... symmetrical ...
else:
    return new node(key=k, left=L, right=G)
```


WBT union

New algorithm for $\operatorname{join}(L, k, G)$:

```
if weight(L) > weight(G) * 3 :
    \(\mathrm{p}=\mathrm{L}\)
    while weight(p.right) > weight(G) * 3:
        p = p.right
    \(\mathrm{q}=\) new node(key=k, left=p.right, right=G)
    p.right = q
    rebalance and update sizes at \(p\) up to the root
    return L
elif weight(G) > weight(L) * 3:
    ... symmetrical ...
else:
    return new node(key=k, left=L, right=G)
```


WBT union - join(L, k, G)

In L, keep going to the right until find node p :

- weight $(p)>$ weight $(G) \times 3$
- weight $($ p.right $) \leq$ weight $(G) \times 3$

Create new node q with key k, left child p.right, right child G. This node is balanced. (Why?)

p and ancestors may need rebalancing.

