
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1



Weight-balanced Binary Search Trees

Another way to keep a BST balanced: a weight-balanced BST.

Idea: at every node n:

1

3
≤ size(n.left) + 1

size(n.right) + 1
≤ 3

or
1

3
≤ weight(n.left)

weight(n.right)
≤ 3

where weight(n) = size(n) + 1

Equivalently,

weight(n.left) ≤ weight(n.right)× 3

weight(n.right) ≤ weight(n.left)× 3

Q. How should we augment the tree?

A. Add a size field to each node.
2



WBT example

44

17 51

62

78

balanced

44

17 51

62

78

80

unbalanced: node 51

3



WBT rebalance

44

17 51

62

78

80

44

17 62

51 78

80

Rotations again!

4



WBT rebalance

Case 1: v is right-heavy; single counter-clockwise rotation works

v

R x

S T

x

v

R S

T

Q. When exactly is v right heavy?

A. weight(x) > weight(R)× 3, i.e.
weight(v .right) > weight(v .left)× 3

5



WBT rebalance

Case 1: v is right-heavy; single counter-clockwise rotation works

v

R x

S T

x

v

R S

T

Q. For a single rotation to work, what should be true about x?

A. weight(S) < weight(T )× 2, i.e.
weight(v .right.left) < weight(v .right.right)× 2

6



WBT rebalance

Show why weight(x .left) < weight(x .right)× 2 is a sufficient
condition.
Let r = size(R), s = size(S), t = size(T ) at the time of the rotation.
v is right-heavy, so either

• a node was added to x to cause imbalance, or
• a node was removed from R to cause imbalance.

Assumptions:

s + 1 < 2(t + 1) assumption 1

3(r + 1) < s + t + 2 v is right-heavy 2

Before addition, we had a WBT:

r + 1 ≤ 3(s + t + 1) and s + t + 1 ≤ 3(r + 1) v was balanced 3

t ≤ 3(s + 1) and s ≤ 3(t + 1) x was balanced 4

Show that after addition + rotation, we have a WBT:

r + s + 2 ≤ 3(t + 1) and t + 1 ≤ 3(r + s + 2) x is balabced

r + 1 ≤ 3(s + 1) and s + 1 ≤ 3(r + 1) v is balabced

7



WBT rebalance

Show why weight(x .left) < weight(x .right)× 2 is a sufficient
condition.
Let r = size(R), s = size(S), t = size(T ) at the time of the rotation.
v is right-heavy, so either

• a node was added to x to cause imbalance, or
• a node was removed from R to cause imbalance.

Assumptions:

s + 1 < 2(t + 1) assumption 1

3(r + 1) < s + t + 2 v is right-heavy 2

Before removal, we had a WBT:

r + 2 ≤ 3(s + t + 2) and s + t + 2 ≤ 3(r + 2) v was balanced 3

s + 1 ≤ 3(t + 1) and t + 1 ≤ 3(s + 1) x was balanced 4

Show that after removal + rotation, we have a WBT:

r + s + 2 ≤ 3(t + 1) and t + 1 ≤ 3(r + s + 2) x is balabced

r + 1 ≤ 3(s + 1) and s + 1 ≤ 3(r + 1) v is balabced

8



WBT rebalance

What if

• weight(v .right) > weight(v .left)× 3 and

• weight(v .right.left) ≥ weight(v .right.right)× 2?

15

30

20

25

15

20

30

25

20

15 30

25

Double rotation.

9



WBT rebalance

Case 2: v is right-heavy; need a double rotation: clockwise then
counter-clockwise

• weight(x) > weight(R)× 3

• weight(S) ≥ weight(T )× 2

v

R x

S T

v

R x

w

S1 S2

T

w

v

R S1

x

S2 T

• S was too big: we split it

• convince yourself that v , x , and w are balanced (even longer,
but not more complex, proof)

10



WBT rebalance

Case 3: v is left-heavy; single clockwise rotation works

v

x

T S

R

x

T v

S R

• weight(v .left) > weight(v .right)× 3 and

• weight(x .right) < weight(x .left)× 2

• argument is symmetric to Case 1

11



WBT rebalance

Case 4: v is left-heavy; need a double rotation: counter-clockwise
then clockwise

v

x

T w

S1 S2

R

w

x

T S1

v

S2 R

• weight(v .left) > weight(v .right)× 3 and

• weight(x .right) ≥ weight(x .left)× 2

• argument is symmetric to Case 2

12



WBT rebalance

For each node v on the path from new/deleted node back to root:

if weight(v.right) > weight(v.left) * 3:

let x = v.right

if weight(x.left) < weight(x.right) * 2:

single rotation: counter-clockwise

else:

double rotation: clockwise then counter-clockwise

else if weight(v.left) > weight(v.right) * 3:

let x = v.left

if weight(x.right) < weight(x.left) * 2:

single rotation: clockwise

else:

double rotation: counter-clockwise then clockwise

else:

no rotation

13



WBT insert

Assuming the height of the weight-balanced tree is O(log n),

1. insert as in BST

2. check and fix balance, update size from parent of new node
up to root

• complexity: Θ(log n)

14



WBT delete

Assuming the height of the weight-balanced tree is O(log n),

1. find which node has the key, call it w
• complexity: Θ(log n) time

2. if w is a leaf, remove it
• complexity: Θ(1) time

3. if w has one child, w ’s parent adopts that child
• complexity: Θ(1) time

4. else:

4.1 go to successor node (complexity: Θ(log n) time)
4.2 replace key of node with successor key

• complexity: Θ(1) time

4.3 successor’s parent adopts successor’s right child
• complexity: Θ(1) time

5. from parent node to root: check and fix balance, update size
• complexity: Θ(log n) time

15



WBT union

Recall the algorithm to compute union of AVL trees T1 and T2:

if T_1 == nil:

return T_2

if T_2 == nil:

return T_1

k = T_2.key

(L, R) = split(T_1, k)

L' = union(L, T_2.left)

R' = union(R, T_2.right)

return join(L', k, R')

What needs to change for WBTs?

16



WBT union

Need to change the algorithm for join(L, k,G ):

if height(L) - height(G) > 1:

p = L

while height(p.right) - height(G) > 1:

p = p.right

q = new node(key=k, left=p.right, right=G)

p.right = q

rebalance and update heights at p up to the root

return L

elif height(G) - height(L) > 1:

... symmetrical ...

else:

return new node(key=k, left=L, right=G)

17



WBT union

New algorithm for join(L, k ,G ):

if weight(L) > weight(G) * 3:

p = L

while weight(p.right) > weight(G) * 3:

p = p.right

q = new node(key=k, left=p.right, right=G)

p.right = q

rebalance and update sizes at p up to the root

return L

elif weight(G) > weight(L) * 3:

... symmetrical ...

else:

return new node(key=k, left=L, right=G)

18



WBT union — join(L, k ,G )

In L, keep going to the right until find node p:

• weight(p) > weight(G )× 3

• weight(p.right) ≤ weight(G )× 3

Create new node q with key k , left child p.right, right child G .
This node is balanced. (Why?)

p

R S

p

R k

q

S G

p and ancestors may need rebalancing.

19


