CSCB63 Tutorial 3 - Union of AVL trees

Show every step of performing the union of the two trees below:

Let's label each node so we can refer to the subtrees rooted at various nodes as we work through the union process.

1. Divide: $\left(L_{0}, R_{0}\right)=\operatorname{split}\left(T_{1}, 18\right)$
(a) $18>11$, therefore we perform $\left(L_{1}, R_{1}\right)=\operatorname{split}(B, 18)$
i. $18<25$, therefore we perform $\left(L_{2}, R_{2}\right)=\operatorname{split}(D, 18)$
A. $18<20$, therefore we perform $\left(L_{3}, R_{3}\right)=\operatorname{split}(n i l, 18)$

We get $\left(L_{3}, R_{3}\right)=(n i l, n i l)$ and so

$$
R_{3}^{\prime}=j \operatorname{join}\left(R_{3}, 20, D . r i g h t\right)=j \operatorname{join}(n i l, 20, \text { nil })=20
$$

This returns $\left(L_{3}, R_{3}^{\prime}\right)=($ nil, 20 $)$, and so $\left(L_{2}, R_{2}\right)=\operatorname{split}(D, 18)=($ nil, 20) $)$
ii. We now compute $R_{2}^{\prime}=\operatorname{join}\left(R_{2}, 25, B\right.$.right $)=\operatorname{join}(20,25,28)=K$

This returns $\left(L_{2}, R_{2}^{\prime}\right)=(n i l, K)$, and so $\left(L_{1}, R_{1}\right)=\operatorname{split}(B, 18)=(n i l, K)$
(b) We get $\left(L_{1}, R_{1}\right)=(n i l, K)$ and so
$L^{\prime}=j \operatorname{join}\left(T_{1}\right.$.left, 11, $\left.L_{1}\right)=\operatorname{join}(A, 11, n i l)=M$:

And so we have $\left(L_{0}, R_{0}\right)=\operatorname{split}\left(T_{1}, 18\right)=(M, K)$
2. Conquer:
(a) Perform $\operatorname{union}\left(L_{0}, F\right)=\operatorname{union}(M, F)$
i. Divide: $\left(L_{1}, R_{1}\right)=\operatorname{split}(M, 14)=(M, n i l)$ by following a process similar to what we just did for $\operatorname{split}(B, 18)$.
ii. Conquer:
A. $\operatorname{Perform} \operatorname{union}(M, 13)=\ldots=\operatorname{join}(M, 13, n i l)=N$:

(11)
B. Perform union $($ nil, 16$)=(16$
iii. Perform $\operatorname{join}(N, 14,16)$ - need a double rotation:

(b) $\operatorname{Perform} \operatorname{union}\left(R_{0}, G\right)=\operatorname{union}(K, G)$
i. Divide: $\operatorname{split}(K, 22)=(20, P)$:
(25)
ii. Conquer:
A. union $(20, n i l)=20$
B. $\operatorname{union}(P, 31)=j \operatorname{join}(P, 31$, nil $)-$ need a double rotation:

iii. Perform $\operatorname{join}(20,22, S)=U$:

3. Finally, $j \operatorname{oin}(Q, 18, U)$ to get

