CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

AVL tree

- stores key/value pairs in all nodes (both leaf and internal)
- has a property relating the keys stored in a subtree to the key stored in the parent node (ordering)
- maintains the height (number of edges on a root-to-leaf path) of $\mathcal{O}(\log n)$
- balance factor $=$ height(left subtree) - height(right subtree)
- maintain balance factor of ± 1 or 0 for all nodes

Operations are $\mathcal{O}(\log n)$:

- search (k, T): return the value corresponding to key k in the tree T
- insert (k, v, T): insert the new key/value pair k / v into the tree T
- delete (k, T) : delete the key/value pair with key k from the tree T

more AVL operations

Given two AVL trees, T_{1} and T_{2}, create the

- union of T_{1} and T_{2}
- an AVL tree T that contains key/value pairs from T_{1} as well as from T_{2}
- if $\left(k, v_{1}\right) \in T_{1}$ and $\left(k, v_{2}\right) \in T_{2}$, then decide whether $\left(k, v_{1}\right) \in T$ or $\left(k, v_{2}\right) \in T$
- intersection of T_{1} and T_{2}
- an AVL tree T that contains key/value pairs that are in both T_{1} and T_{2}
- if $\left(k, v_{1}\right) \in T_{1}$ and $\left(k, v_{2}\right) \in T_{2}$, then decide whether $\left(k, v_{1}\right) \in T$ or $\left(k, v_{2}\right) \in T$
- difference of T_{1} and T_{2}
- an AVL tree T that contains key/value pairs that are in T_{1} but not in T_{2}

AVL union

Given two AVL trees, T_{1} and T_{2}, create the union of T_{1} and T_{2} :

- an AVL tree T that contains key/value pairs from T_{1} as well as from T_{2}
- if $\left(k, v_{1}\right) \in T_{1}$ and $\left(k, v_{2}\right) \in T_{2}$, then we will have $\left(k, v_{2}\right) \in T$ (update)

Simple way to construct the union:

- wlog, numnodes $\left(T_{1}\right)=n \leq m=\operatorname{numnodes}\left(T_{2}\right)$
- insert all nodes from T_{1} into T_{2}
- complexity?
- can we do better?

divide and conquer algorithms

Idea:

- split the input into smaller pieces (divide)
- obtain smaller problems of the same kind
- apply the algorithm to the smaller pieces (conquer)
- obtain solutions to the smaller problems
- build the answer from the answers to the smaller problems

Some example you have seen before?

AVL union

Given two AVL trees, T_{1} and T_{2}, create the union of T_{1} and T_{2}.
Divide and conquer approach:

- split T_{1} into smaller trees
- split T_{2} into smaller trees
- build unions of smaller trees
- merge results into union of T_{1} and T_{2}

AVL union: split

- suppose tree T_{2} has key k at root node
- split T_{1} into $T_{<k}$ and $T_{>k}$, both balanced
- $T_{<k}$ contains keys from T_{1} that are less than k
- $T_{>k}$ contains keys from T_{1} that are bigger than k
- need algorithm split(T, k) that returns $\left(T_{<k}, T_{>k}\right)$ such that both $T_{<k}$ and $T_{>k}$ are AVL trees

AVL union: split

split(T, k) idea

- how to split at key 16 ?

AVL union: split

split(T, k) algorithm

```
if T == nil:
    return (nil, nil)
```

if $k==$ T.key:
return (T.left, T.right)
if k < T.key:
(L, R) = split(T.left, k)
R' = join(R, T.key, T.right)
return (L, R')
if k > T.key:

```
    (L, R) = split(T.right, k)
    L' = join(T.left, T.key, L)
    return (L', R)
```

Need algorithm for join!

AVL union: join

join(L, k, G) idea

- L already contains keys $<k, G$ already contains keys $>k$
- if L much taller than $G(\operatorname{height}(L)-\operatorname{height}(G)>1)$
- insert k and G as subtree into L
- if G much taller than $L(\operatorname{height}(G)-\operatorname{height}(L)>1)$
- insert k and L as subtree into G
- if L and G differ by $\leq 1(\operatorname{abs}(\operatorname{height}(L)-\operatorname{height}(G)) \leq 1)$
- make a tree with k in root, L as left subtree, and G as right subtree

AVL union: join

if $\operatorname{height}(L)-\operatorname{height}(G)>1$, insert G as subtree into L :

1. in L, keep going to the right to find the node p such that

- p is still too tall: $\operatorname{height}(p)-\operatorname{height}(G)>1$, but
- but p.right is just right: height(p.right) - height $(G) \leq 1$

2. create new node q with key k, left child p.right, and right child G, this node becomes p 's new right child
3. rebalance from p upwards, as needed

AVL union: join

if $\operatorname{height}(L)-\operatorname{height}(G)>1$, insert G as subtree into L.

How do we know the result is an AVL?

AVL union: join

- height (p) - height $(G)>1$, but
- height(p.right) - height $(G) \leq 1$

Let $h=\operatorname{height}(G)$.
Case 1:

AVL union: join

- $\operatorname{height}(p)-\operatorname{height}(G)>1$, but
- height(p.right) - height $(G) \leq 1$

Let $h=\operatorname{height}(G)$.
Case 2:

AVL union: join

- $\operatorname{height}(p)-\operatorname{height}(G)>1$, but
- height(p.right) - height $(G) \leq 1$

Let $h=\operatorname{height}(G)$.
Case 3:

AVL union: join

- $\operatorname{height}(p)-\operatorname{height}(G)>1$, but
- height(p.right) - height $(G) \leq 1$

Let $h=\operatorname{height}(G)$.
Case 4:

AVL union: join

join(L, k, G) pseudocode

```
if height(L) - height(G) > 1:
    p = L
    while height(p.right) - height(G) > 1:
        p = p.right
    \(\mathrm{q}=\) new node(key=k, left=p.right, right=G)
    p.right = q
    rebalance and update heights at \(p\) up to the root
    return L
elif height(G) - height(L) > 1:
    ... symmetrical ...
else:
    return new node(key=k, left=L, right=G)
```


AVL union

Finally, union(T_{1}, T_{2}) algorithm:
if $T_{-} 1==n i l:$
return T_2
if $\mathrm{T}_{-} 2$ == nil:
return T_1
k = T_2.key
(L, R) = split(T_1, k)
$L^{\prime}=$ union(L, T_2.left)
R' = union(R, T_2.right)
return join(L', k, R')

AVL union: example

Follow all the steps of the algorithm above to construct the union of:

Complete example in tutorial.

AVL union: complexity

- So, did we do better than our first try?
- Best union / intersection / difference algorithm for balanced trees (including AVL and red-black trees) is $\Theta\left(n \log \left(\frac{m}{n}+1\right)\right)$ (numnodes $\left(T_{1}\right)=n \leq m=\operatorname{numnodes}\left(T_{2}\right)$)
- Can find proof of complexity in Guy Blelloch, Daniel Ferizovic, and Yihan Sun, Parallel ordered sets using join. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016. https://arxiv.org/abs/1602.02120

