CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai



AVL tree

e stores key/value pairs in all nodes (both leaf and internal)
® has a property relating the keys stored in a subtree to the key
stored in the parent node (ordering)

® maintains the height (number of edges on a root-to-leaf path)
of O(log n)
® balance factor = height(left subtree) — height(right subtree)
® maintain balance factor of £1 or 0 for all nodes

Operations are O(log n):

® search(k, T): return the value corresponding to key k in the
tree T

e insert(k, v, T): insert the new key/value pair k/v into
the tree T

¢ delete(k, T): delete the key/value pair with key k from the
tree T



more AVL operations

Given two AVL trees, T1 and T», create the
® union of T71 and T»

® an AVL tree T that contains key/value pairs from Ty as well
as from T,

® if (k,v1) € Ty and (k, va) € T2, then decide whether
(k,vi) e Tor(k,vo)eT

® intersection of T; and T,
® an AVL tree T that contains key/value pairs that are in both
T1 and T
® if (k,v1) € Ty and (k, va) € Ty, then decide whether
(k,vi) e Tor (k,w)e T

e difference of 77 and T,

® an AVL tree T that contains key/value pairs that are in Ty but
not in T,



AVL union

Given two AVL trees, T1 and T», create the union of T7 and T5:

® an AVL tree T that contains key/value pairs from Ty as well
as from T»

e if (k,vi) € T1 and (k,v2) € To, then we will have (k,v2) € T
(update)

Simple way to construct the union:
® wlog, numnodes(T1) = n < m = numnodes(T3)
® insert all nodes from T7 into T»

® complexity?

® can we do better?



divide and conquer algorithms

Idea:
® split the input into smaller pieces (divide)
® obtain smaller problems of the same kind
¢ apply the algorithm to the smaller pieces (conquer)

® obtain solutions to the smaller problems

® build the answer from the answers to the smaller problems

Some example you have seen before?



AVL union

Given two AVL trees, T1 and T», create the union of T7 and T5.

Divide and conquer approach:
® split 77 into smaller trees
® split 75 into smaller trees
® build unions of smaller trees

® merge results into union of T7 and T



AVL union: split

® suppose tree T, has key k at root node
® split T7 into T and Ty, both balanced

® T_, contains keys from T that are less than k
® T., contains keys from T that are bigger than k

® need algorithm split (T, k) that returns (T, Ts) such
that both T, and T~ are AVL trees



AVL union: split

split (T, k) idea

{12,14,17}

® how to split at key 167

(27,30}



AVL union: split
split (T, k) algorithm

if T == nil:
return (nil, nil)

if k == T.key:
return (T.left, T.right)

if k < T.key:
(L, R) = split(T.left, k)
R' = join(R, T.key, T.right)
return (L, R')

if k > T.key:
(L, R) = split(T.right, k)
L' = join(T.left, T.key, L)
return (L', R)

Need algorithm for join!



AVL union: join

join(L, k, G) idea
® | already contains keys < k, G already contains keys > k

e if L much taller than G (height(L) — height(G) > 1)

® insert k and G as subtree into L

e if G much taller than L (height(G) — height(L) > 1)

® insert k and L as subtree into G

e if L and G differ by < 1 (abs(height(L) — height(G)) < 1)
® make a tree with k in root, L as left subtree, and G as right
subtree

10



AVL union: join

if height(L) — height(G) > 1, insert G as subtree into L:
1. in L, keep going to the right to find the node p such that

® pis still too tall: height(p) — height(G) > 1, but
® but p.right is just right: height(p.right) — height(G) <1

2. create new node g with key k, left child p.right, and right
child G, this node becomes p’s new right child

3. rebalance from p upwards, as needed

\p
A~

11



AVL union: join
if height(L) — height(G) > 1, insert G as subtree into L.

How do we know the result is an AVL?

12



AVL union: join

® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).
Case 1:

P

h7®\ o
R S
h+2 h+1

13



AVL union: join
® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).
Case 2:

P

A
R S
h+1 h

14



AVL union: join

® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).

Case 3:
p
h+2 —_ —_
R S

>

h+1

15



AVL union: join

® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).
Case 4:

P

”?Q\ o
R S
h+1 h+1

16



AVL union: join
join(L, k, G) pseudocode

if height(L) - height(G) > 1:

p=1L
while height(p.right) - height(G) > 1:
p = p.right
q = new node(key=k, left=p.right, right=G)
p.right = q
rebalance and update heights at p up to the root
return L
elif height(G) - height(L) > 1:
. symmetrical ...
else:

return new node(key=k, left=L, right=G)

17



AVL union

Finally, union(Ty, T») algorithm:

if T_1 == nil:
return T_2

if T_2 == nil:
return T_1

k = T_2.key

(L, R) = split(T_1, k)
L' = union(L, T_2.left)
R' = union(R, T_2.right)
return join(L', k, R')

18



AVL union: example

Follow all the steps of the algorithm above to construct the union
of:

T1:

10)
©

Complete example in tutorial.

10



AVL union: complexity

® So, did we do better than our first try?

® Best union / intersection / difference algorithm for balanced
trees (including AVL and red-black trees) is ©(nlog(Z + 1))
(numnodes(T1) = n < m = numnodes(T3))

® Can find proof of complexity in Guy Blelloch, Daniel Ferizovic,
and Yihan Sun, Parallel ordered sets using join. ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2016. https://arxiv.org/abs/1602.02120

20


https://arxiv.org/abs/1602.02120

