CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai



AVL tree

e stores key/value pairs in all nodes (both leaf and internal)
® has a property relating the keys stored in a subtree to the key
stored in the parent node (ordering)

® maintains the height (number of edges on a root-to-leaf path)
of O(log n)
® balance factor = height(left subtree) — height(right subtree)
® maintain balance factor of £1 or 0 for all nodes

Operations are O(log n):

® search(k, T): return the value corresponding to key k in the
tree T

e insert(k, v, T): insert the new key/value pair k/v into
the tree T

¢ delete(k, T): delete the key/value pair with key k from the
tree T



more AVL operations

Given two AVL trees, T1 and T», create the
® union of T71 and T»

® an AVL tree T that contains key/value pairs from Ty as well
as from T,

® if (k,v1) € Ty and (k, va) € T2, then decide whether
(k,vi) e Tor(k,vo)eT

® intersection of T; and T,
® an AVL tree T that contains key/value pairs that are in both
T1 and T
® if (k,v1) € Ty and (k, va) € Ty, then decide whether
(k,vi) e Tor (k,w)e T

e difference of 77 and T,

® an AVL tree T that contains key/value pairs that are in Ty but
not in T,



AVL union

Given two AVL trees, T1 and T», create the union of T7 and T5:

® an AVL tree T that contains key/value pairs from Ty as well
as from T»

e if (k,v1) € T1 and (k,v2) € Ty, then we will have (k,w) € T
(update)

Simple way to construct the union:
® wlog, numnodes(T1) = n < m = numnodes(T;)
® insert all nodes from Ty into T»
® complexity?
® each insert O(log(n + m))

® pinserts
e total O(nlog(n+ m))

® can we do better?



divide and conquer algorithms

Idea:
® split the input into smaller pieces (divide)
® obtain smaller problems of the same kind
¢ apply the algorithm to the smaller pieces (conquer)
® obtain solutions to the smaller problems

® build the answer from the answers to the smaller problems

Some example you have seen before?
® merge sort
® quick sort
® binary search in an array
® search in a tree

® parsing techniques



AVL union

Given two AVL trees, T1 and T», create the union of T7 and T5.

Divide and conquer approach:
® split 77 into smaller trees
® split 75 into smaller trees
® build unions of smaller trees

® merge results into union of T7 and T



AVL union: split

® suppose tree T, has key k at root node
® split T7 into T and Ty, both balanced

® T_, contains keys from T that are less than k
® T., contains keys from T that are bigger than k

T

Tk Tk

® need algorithm split (T, k) that returns (T—x, T~x) such
that both T, and T~y are AVL trees



AVL union: split
split (T, k) idea

{12,14,17} {27,30}

® how to split at key 167

e want {12,14},{17,25,27,30}
° 16 <25:
® split left subtree into (L, R) = ({12,14},{17})

® new left subtree is the left subtree of the sub-split:
L' ={12,14}

® new right subtree is R’ = join({17}, 25, {27,30})



AVL union: split
split (T, k) algorithm

if T == nil:
return (nil, nil)

if k == T.key:
return (T.left, T.right)

if k < T.key:
(L, R) = split(T.left, k)
R' = join(R, T.key, T.right)
return (L, R')

if k > T.key:
(L, R) = split(T.right, k)
L' = join(T.left, T.key, L)
return (L', R)

Need algorithm for join!



AVL union: join

join(L, k, G) idea
® | already contains keys < k, G already contains keys > k

e if L much taller than G (height(L) — height(G) > 1)

® insert k and G as subtree into L

e if G much taller than L (height(G) — height(L) > 1)

® insert k and L as subtree into G

e if L and G differ by < 1 (abs(height(L) — height(G)) < 1)
® make a tree with k in root, L as left subtree, and G as right
subtree

10



AVL union: join

if height(L) — height(G) > 1, insert G as subtree into L:
1. in L, keep going to the right to find the node p such that

® pis still too tall: height(p) — height(G) > 1, but
® but p.right is just right: height(p.right) — height(G) <1

2. create new node g with key k, left child p.right, and right
child G, this node becomes p’s new right child

3. rebalance from p upwards, as needed

NP N\
AL TR

11



AVL union: join
if height(L) — height(G) > 1, insert G as subtree into L.

How do we know the result is an AVL?
® show that it is a BST (ordering)

® show that it is balanced

12



AVL union: join

® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).
Case 1:

N\ N\

h+3 — h+3
aq
R S R h+2
h+2 h+1 h+2

No rebalancing necessary.

13



AVL union: join

® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).
Case 2:

No rebalancing necessary.

14



AVL union: join

® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).
Case 3:

S
h+2
q
h+2 h+1 h+1

5 G R 5/_ Sk G
h+1 h h h-{0,1}h—{0,1} h

Double rotation to rebalance at p. No other rebalancing necessary.

15



AVL union: join

® height(p) — height(G) > 1, but
® height(p.right) — height(G) <1
Let h = height(G).
Case 4:

N\ N\

h+2 — h+3
aq
R S R h+2
h+1 h+1 h+1

S G
h+1 h

No rotation at p, but ancestors of p may need rebalancing.

16



AVL union: join
join(L, k, G) pseudocode

if height(L) - height(G) > 1:

p=1L
while height(p.right) - height(G) > 1:
p = p.right
q = new node(key=k, left=p.right, right=G)
p.right = q
rebalance and update heights at p up to the root
return L
elif height(G) - height(L) > 1:
. symmetrical ...
else:

return new node(key=k, left=L, right=G)

17



AVL union

Finally, union(Ty, T») algorithm:

if T_1 == nil:
return T_2

if T_2 == nil:
return T_1

k = T_2.key

(L, R) = split(T_1, k)
L' = union(L, T_2.left)
R' = union(R, T_2.right)
return join(L', k, R')

18



AVL union: example

Follow all the steps of the algorithm above to construct the union
of:

T1:

10)
©

Complete example in tutorial.

10



AVL union: complexity

® So, did we do better than our first try?

® Best union / intersection / difference algorithm for balanced
trees (including AVL and red-black trees) is ©(nlog(Z + 1))
(numnodes(T1) = n < m = numnodes(T3))

® Can find proof of complexity in Guy Blelloch, Daniel Ferizovic,
and Yihan Sun, Parallel ordered sets using join. ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2016. https://arxiv.org/abs/1602.02120

20


https://arxiv.org/abs/1602.02120

