
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1



AVL tree

• stores key/value pairs in all nodes (both leaf and internal)

• has a property relating the keys stored in a subtree to the key
stored in the parent node (ordering)

• maintains the height (number of edges on a root-to-leaf path)
of O(log n)

• balance factor = height(left subtree) − height(right subtree)
• maintain balance factor of ±1 or 0 for all nodes

Operations are O(log n):

• search(k, T): return the value corresponding to key k in the
tree T

• insert(k, v, T): insert the new key/value pair k/v into
the tree T

• delete(k, T): delete the key/value pair with key k from the
tree T

2



more AVL operations

Given two AVL trees, T1 and T2, create the
• union of T1 and T2

• an AVL tree T that contains key/value pairs from T1 as well
as from T2

• if (k , v1) ∈ T1 and (k , v2) ∈ T2, then decide whether
(k, v1) ∈ T or (k , v2) ∈ T

• intersection of T1 and T2

• an AVL tree T that contains key/value pairs that are in both
T1 and T2

• if (k , v1) ∈ T1 and (k , v2) ∈ T2, then decide whether
(k, v1) ∈ T or (k , v2) ∈ T

• difference of T1 and T2

• an AVL tree T that contains key/value pairs that are in T1 but
not in T2

3



AVL union

Given two AVL trees, T1 and T2, create the union of T1 and T2:

• an AVL tree T that contains key/value pairs from T1 as well
as from T2

• if (k , v1) ∈ T1 and (k , v2) ∈ T2, then we will have (k , v2) ∈ T
(update)

Simple way to construct the union:

• wlog, numnodes(T1) = n ≤ m = numnodes(T2)

• insert all nodes from T1 into T2

• complexity?
• each insert O(log(n +m))
• n inserts
• total O(n log(n +m))

• can we do better?

4



divide and conquer algorithms

Idea:
• split the input into smaller pieces (divide)

• obtain smaller problems of the same kind

• apply the algorithm to the smaller pieces (conquer)
• obtain solutions to the smaller problems

• build the answer from the answers to the smaller problems

Some example you have seen before?

• merge sort

• quick sort

• binary search in an array

• search in a tree

• parsing techniques

5



AVL union

Given two AVL trees, T1 and T2, create the union of T1 and T2.

Divide and conquer approach:

• split T1 into smaller trees

• split T2 into smaller trees

• build unions of smaller trees

• merge results into union of T1 and T2

6



AVL union: split

• suppose tree T2 has key k at root node
• split T1 into T<k and T>k , both balanced

• T<k contains keys from T1 that are less than k
• T>k contains keys from T1 that are bigger than k

T<k T>k

k T2

L R

• need algorithm split(T, k) that returns (T<k, T>k) such
that both T<k and T>k are AVL trees

7



AVL union: split

split(T, k) idea

25

T

{12, 14, 17} {27, 30}

• how to split at key 16?

• want {12, 14}, {17, 25, 27, 30}
• 16 < 25 :

• split left subtree into (L,R) = ({12, 14}, {17})
• new left subtree is the left subtree of the sub-split:

L′ = {12, 14}
• new right subtree is R ′ = join({17}, 25, {27, 30})

8



AVL union: split

split(T, k) algorithm

if T == nil:

return (nil, nil)

if k == T.key:

return (T.left, T.right)

if k < T.key:

(L, R) = split(T.left, k)

R' = join(R, T.key, T.right)

return (L, R')

if k > T.key:

(L, R) = split(T.right, k)

L' = join(T.left, T.key, L)

return (L', R)

Need algorithm for join!

9



AVL union: join

join(L, k, G) idea

• L already contains keys < k , G already contains keys > k

• if L much taller than G (height(L)− height(G ) > 1)
• insert k and G as subtree into L

• if G much taller than L (height(G )− height(L) > 1)
• insert k and L as subtree into G

• if L and G differ by ≤ 1 (abs(height(L)− height(G )) ≤ 1)
• make a tree with k in root, L as left subtree, and G as right

subtree

10



AVL union: join

if height(L)− height(G ) > 1, insert G as subtree into L:

1. in L, keep going to the right to find the node p such that
• p is still too tall: height(p)− height(G ) > 1, but
• but p.right is just right: height(p.right)− height(G ) ≤ 1

2. create new node q with key k , left child p.right, and right
child G , this node becomes p’s new right child

3. rebalance from p upwards, as needed

p

R S

p

R k

q

S G

11



AVL union: join

if height(L)− height(G ) > 1, insert G as subtree into L.

How do we know the result is an AVL?

• show that it is a BST (ordering)

• show that it is balanced

12



AVL union: join

• height(p)− height(G ) > 1, but

• height(p.right)− height(G ) ≤ 1

Let h = height(G ).

Case 1:

p
h + 3

R
h + 2

S
h + 1

p
h + 3

R
h + 2

k

q

h + 2

S
h + 1

G
h

No rebalancing necessary.

13



AVL union: join

• height(p)− height(G ) > 1, but

• height(p.right)− height(G ) ≤ 1

Let h = height(G ).

Case 2:

p
h + 2

R
h + 1

S
h

p
h + 2

R
h + 1

k

q

h + 1

S
h

G
h

No rebalancing necessary.

14



AVL union: join

• height(p)− height(G ) > 1, but

• height(p.right)− height(G ) ≤ 1

Let h = height(G ).

Case 3:

p
h + 2

R
h

S
h + 1

p

R
h

k

q

h + 2

S
h + 1

G
h

S
h + 2

p
h + 1

R
h

SL
h − {0, 1}

k

q

h + 1

SR
h − {0, 1}

G
h

Double rotation to rebalance at p. No other rebalancing necessary.

15



AVL union: join

• height(p)− height(G ) > 1, but

• height(p.right)− height(G ) ≤ 1

Let h = height(G ).

Case 4:

p
h + 2

R
h + 1

S
h + 1

p
h + 3

R
h + 1

k

q

h + 2

S
h + 1

G
h

No rotation at p, but ancestors of p may need rebalancing.

16



AVL union: join

join(L, k, G) pseudocode

if height(L) - height(G) > 1:

p = L

while height(p.right) - height(G) > 1:

p = p.right

q = new node(key=k, left=p.right, right=G)

p.right = q

rebalance and update heights at p up to the root

return L

elif height(G) - height(L) > 1:

... symmetrical ...

else:

return new node(key=k, left=L, right=G)

17



AVL union

Finally, union(T1, T2) algorithm:

if T_1 == nil:

return T_2

if T_2 == nil:

return T_1

k = T_2.key

(L, R) = split(T_1, k)

L' = union(L, T_2.left)

R' = union(R, T_2.right)

return join(L', k, R')

18



AVL union: example

Follow all the steps of the algorithm above to construct the union
of:

T1:

11

10

9

25

20 28

T2:

18

14

13 16

22

31

Complete example in tutorial.

19



AVL union: complexity

• So, did we do better than our first try?

• Best union / intersection / difference algorithm for balanced
trees (including AVL and red-black trees) is Θ(n log(mn + 1))
(numnodes(T1) = n ≤ m = numnodes(T2))

• Can find proof of complexity in Guy Blelloch, Daniel Ferizovic,
and Yihan Sun, Parallel ordered sets using join. ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2016. https://arxiv.org/abs/1602.02120

20

https://arxiv.org/abs/1602.02120

