
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1



augmented data structures

An augmented data structure is simply an existing data structure
modified to store additional information and / or perform
additional operations.

Our task: a data structure that implements an ordered
set/dictionary and, in addition to insert, delete, search, union
(we’ll see union shortly), etc., also supports two types of “rank
queries”:

• rank(S, k): given a key k in set S , what is its rank, i.e., the
key’s position among the elements?

• select(S, r): given a rank r and set S , which key in S has
this rank?

For example, in the set of values S = {3,15,27,30,35,56}:
• rank(S, 15) =

• select(S, 4) =

2



augmented data structures

For example, in the set of values S = {3,15,27,30,35,56}:

27

3

15

35

30 56

• rank(S, 15) =

• select(S, 4) =

3



AVL tree without modification

If we use AVL tree without modifications:

• To implement rank:

• To implement select:

• What is the complexity of rank?

• What is the complexity of select?

• Will operations search, insert, and delete need to change?

4



augmented AVL tree — attempt 1

Idea: store rank(T , n.key) in each node n in tree T .

27

3

15

35

30 56

3

1

2

5

4 6

• To implement rank(T, k):

• To implement select(T, r):

5



augmented AVL tree — attempt 1

Idea: store rank(T , n.key) in each node n in tree T .

• What is the complexity of rank(T, k)?

• What is the complexity of select(T, r)?

• Will operations search, insert, and delete need to change?

6



augmented AVL tree — attempt 2

Idea: store size(n) — the number of nodes in subtree rooted at
n including n itself — for each node n.

27

3

15

35

30 56

6

2

1

3

1 1

Q. How is size related to rank?
Define relative rank rank(n, k) as rank of key k relative to the
keys in the tree rooted at node n.

7



augmented AVL tree — rank

rank(T, k) — idea

• do search(T, k) keeping track of the rank computed so far

• at each move to the right, add size of left subtree we skipped
plus 1 for the key itself

• if found key in node n, add size(n.left) + 1 to rank so far, to
get the real rank

27

3

15

35

30 56

6

2

1

3

1 1

rank(T, 35):

•
•
•
•

8



augmented AVL tree — rank

rank(T, k) — idea

• do search(T, k) keeping track of the rank computed so far

• at each move to the right, add size of left subtree we skipped
plus 1 for the key itself

• if found key in node n, add size(n.left) + 1 to rank so far, to
get the real rank

27

3

15

35

30 56

6

2

1

3

1 1

rank(T, 15):

•
•
•

9



augmented AVL tree — rank

rank(T, k) — pseudocode

if T == nil: # k not in T

deal with special case

if k == T.key:

return size(T.left) + 1

if k > T.key:

return size(T.left) + 1 + rank(T.right, k)

else:

return rank(T.left, k)

where

size(T) = 0 if T == nil else T.size

10



augmented AVL tree — select

select(T, r) — idea

• at each visited node n, compare r to size(n.left) + 1

• if equal, found the node: return n.key

• if <, then key with rank r is in left subtree
• relative rank in left subtree is the same
• look for rank r in n.left

• if >, then key with rank r is in the right subtree
• relative rank in the right subtree is r − (size(n.left) + 1)
• look for rank r − size(n.left)− 1 in n.right

11



augmented AVL tree — select

select(T, r) — idea

• at each visited node n, compare r to size(n.left) + 1

• . . .

27

3

15

35

30 56

6

2

1

3

1 1

select(T, 5):

•
•
•

12



augmented AVL tree — select

select(T, r) — idea

• at each visited node n, compare r to size(n.left) + 1

• . . .

27

3

15

35

30 56

6

2

1

3

1 1

select(T, 2):

•
•
•

13



augmented AVL tree — select

select(T, r) — pseudocode

if T == nil: # r not in T

deal with special case

r' = size(T.left) + 1

if r == r':

return T.key

if r < r':

return select(T.left, r)

else:

return select(T.right, r - r')

where

size(T) = 0 if T == nil else T.size

14



augmented AVL tree — insert / delete

• insert(T, k, v):

• delete(T, k):

• rebalancing:

Therefore, each operation is Θ(log n).

15


