CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

augmented data structures

An augmented data structure is simply an existing data structure modified to store additional information and / or perform additional operations.

Our task: a data structure that implements an ordered set/dictionary and, in addition to insert, delete, search, union (we'll see union shortly), etc., also supports two types of "rank queries":

- rank(S, k): given a key k in set S, what is its rank, i.e., the key's position among the elements?
- select (S, r): given a rank r and set S, which key in S has this rank?

For example, in the set of values $S=\{3,15,27,30,35,56\}$:

- $\operatorname{rank}(S, 15)=$
- select(S, 4) =

augmented data structures

For example, in the set of values $S=\{3,15,27,30,35,56\}$:

- $\operatorname{rank}(S, 15)=$
- select (S, 4) =

AVL tree without modification

If we use AVL tree without modifications:

- To implement rank:
- To implement select:
- What is the complexity of rank?
- What is the complexity of select?
- Will operations search, insert, and delete need to change?

augmented AVL tree - attempt 1

 Idea: store $\operatorname{rank}(T, n$.key $)$ in each node n in tree T.

- To implement $\operatorname{rank}(T, k)$:
- To implement select(T, r):

augmented AVL tree - attempt 1

Idea: store $\operatorname{rank}(T, n$.key $)$ in each node n in tree T.

- What is the complexity of $\operatorname{rank}(\mathrm{T}, \mathrm{k})$?
- What is the complexity of select(T, r)?
- Will operations search, insert, and delete need to change?

augmented AVL tree - attempt 2

Idea: store size(n) - the number of nodes in subtree rooted at n including n itself - for each node n.

Q. How is size related to rank?

Define relative rank rank (n, k) as rank of key k relative to the keys in the tree rooted at node n.

augmented AVL tree - rank

$\operatorname{rank}(T, k)$ - idea

- do search (T, k) keeping track of the rank computed so far
- at each move to the right, add size of left subtree we skipped plus 1 for the key itself
- if found key in node n, add size(n.left) +1 to rank so far, to get the real rank

rank(T, 35):

augmented AVL tree - rank

$\operatorname{rank}(T, k)$ - idea

- do search (T, k) keeping track of the rank computed so far
- at each move to the right, add size of left subtree we skipped plus 1 for the key itself
- if found key in node n, add size(n.left) +1 to rank so far, to get the real rank

rank(T, 15):

augmented AVL tree - rank

$\operatorname{rank}(T, k)$ - pseudocode
if $\mathrm{T}==$ nil: \# k not in T
deal with special case
if $k==$ T.key:
return size(T.left) + 1
if k > T.key:
return size(T.left) + 1 + rank(T.right, k)
else:
return rank(T.left, k)
where
$\operatorname{size}(T)=0$ if $T==n i l$ else T. size

augmented AVL tree - select

select (T, r) — idea

- at each visited node n, compare r to size(n.left) +1
- if equal, found the node: return n.key
- if $<$, then key with rank r is in left subtree
- relative rank in left subtree is the same
- look for rank r in n.left
- if $>$, then key with rank r is in the right subtree
- relative rank in the right subtree is $r-(\operatorname{size}(n$.left $)+1)$
- look for rank r - size(n.left) - 1 in n.right

augmented AVL tree - select

select(T, r) — idea

- at each visited node n, compare r to size(n.left) +1

augmented AVL tree - select

select(T, r) — idea

- at each visited node n, compare r to size(n.left) +1

augmented AVL tree - select

```
select(T, r) - pseudocode
if T == nil: # r not in T
    deal with special case
r' = size(T.left) + 1
if r == r':
    return T.key
if r< r':
    return select(T.left, r)
else:
    return select(T.right, r - r')
where
size(T) = O if T == nil else T.size
```


augmented AVL tree - insert / delete

- insert(T, k, v):
- delete(T, k):
- rebalancing:

Therefore, each operation is $\Theta(\log n)$.

