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augmented data structures

An augmented data structure is simply an existing data structure
modified to store additional information and / or perform
additional operations.

Our task: a data structure that implements an ordered
set/dictionary and, in addition to insert, delete, search, union
(we'll see union shortly), etc., also supports two types of “rank
queries”:
® rank(S, k): given a key k in set S, what is its rank, i.e., the
key's position among the elements?

® select(S, r): given a rank r and set S, which key in S has
this rank?
For example, in the set of values S = {3,15,27,30,35,56}:
® rank(S, 15) = 2
® select(S, 4) = 30
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® rank(S, 15) = 2
® select(S, 4) = 30



AVL tree without modification

If we use AVL tree without modifications:
® To implement rank:

® in-order traversal, keeping track of the number of nodes
visited, until the desired key is reached

® To implement select:

® in-order traversal, keeping track of the number of nodes
visited, until the desired rank is reached

What is the complexity of rank? ©(n)

What is the complexity of select? ©(n)

Will operations search, insert, and delete need to
change? No



augmented AVL tree — attempt 1

Idea: store rank(T,n.key) in each node n in tree T.

® To implement rank (T, k):
® search for key k
® when found node n with n.key = k, return n.rank

® To implement select(T, r):

® search for rank r
® when found node n with n.rank = r, return n.key



augmented AVL tree — attempt 1

Idea: store rank(T,n.key) in each node n in tree T.

¢ What is the complexity of rank(T, k)? ©(logn)

® What is the complexity of select(T, r)? ©(logn)

® Will operations search, insert, and delete need to
change? Yes!

® insert and delete may need to update ranks of all other
nodes — ©(n)



augmented AVL tree — attempt 2

Idea: store size(n) — the number of nodes in subtree rooted at
n including n itself — for each node n.

Q. How is size related to rank?

Define relative rank rank(n, k) as rank of key k relative to the
keys in the tree rooted at node n.

rank(T, k) = 1 4+ number of keys in T less than k

rank(n, n.key) = 1 + size(n.left)



augmented AVL tree — rank

rank(T, k) — idea
® do search(T, k) keeping track of the rank computed so far

® at each move to the right, add size of left subtree we skipped
plus 1 for the key itself

e if found key in node n, add size(n.left) + 1 to rank so far, to
get the real rank

rank (T, 35):
® 35 > 27: go right

® rank is size(T.left) + 1 +
rank(T.right, 35)

° rank(@, 35):

® 35 = 35: found key

o 51ze(@ left) + 1

*2+1+1+1=5




augmented AVL tree — rank
rank(T, k) — idea
® do search(T, k) keeping track of the rank computed so far

® at each move to the right, add size of left subtree we skipped
plus 1 for the key itself

e if found key in node n, add size(n.left) + 1 to rank so far, to
get the real rank

rank (T, 15):
® 15 < 27: go left
® rank is rank(T.left, 15)
® 15 > 3: go right
® rank is size(@.left) +
1 + rank((3).right,15)

* rank((3).right,15) =
0+1=1

0 +1+1=2




augmented AVL tree — rank

rank (T, k) — pseudocode

if T == nil: # k not in T
deal with special case
if k == T.key:
return size(T.left) + 1
if k > T.key:
return size(T.left) + 1 + rank(T.right, k)
else:
return rank(T.left, k)

where

size(T) = 0 if T == nil else T.size
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augmented AVL tree — select

select(T, r) — idea
® at each visited node n, compare r to size(n.left) + 1

e if equal, found the node: return n.key

e if <, then key with rank r is in left subtree

® relative rank in left subtree is the same
® |ook for rank r in n.left

® if >, then key with rank r is in the right subtree

® relative rank in the right subtree is r — (size(n.left) + 1)
® look for rank r — size(n.left) — 1 in n.right
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augmented AVL tree — select

select(T, r) — idea

® at each visited node n, compare r to size(n.left) + 1

select (T, 5):
® size(T.left) + 1 =2 +
3 < b5: go right
® select(T.right, 5 - 3)

° select(@, 2):

° size(@.left) + 1 =
® found node! key is 35

1

2
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augmented AVL tree — select

select(T, r) — idea

® at each visited node n, compare r to size(n.left) + 1

select (T, 2):
® size(T.left) + 1 =2 + 1 =
3 > 2: go left
® select(T.left, 2)
° select(@, 2):

* size((3).left)+1 = 1 <
go right
° select(@.right, 2 -1)

® select (@, 1):

° size(@.left) +1=1
® found node! key is 15
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augmented AVL tree — select

select (T, r) — pseudocode

if T == nil: # r not in T
deal with special case
r' = size(T.left) + 1
if r ==r':
return T.key
if r <r':
return select(T.left, r)
else:
return select(T.right, r - r')

where

size(T) = 0 if == nil else T.size
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augmented AVL tree — insert / delete

® insert(T, k, v):
if insert successful, for each node n on path from parent of
new node to root, n.size = n.size + 1

® delete(T, k):
after the node is removed (either x with x.key = k or its
successor), for each node n on path from parent of removed
node to root, n.size = n.size — 1

® rebalancing:
for each rotation, a constant number of nodes needs to be
updated

Therefore, each operation is ©(log n).
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