CSCB63 — Design and Analysis of Data
Structures

Anya Tafliovich!

!based on notes by Anna Bretscher and Albert Lai



augmented data structures

An augmented data structure is simply an existing data structure
modified to store additional information and / or perform
additional operations.

Our task: a data structure that implements an ordered
set/dictionary and, in addition to insert, delete, search, union
(we'll see union shortly), etc., also supports two types of “rank
queries”:
® rank(S, k): given a key k in set S, what is its rank, i.e., the
key's position among the elements?

® select(S, r): given a rank r and set S, which key in S has
this rank?
For example, in the set of values S = {3,15,27,30,35,56}:
® rank(S, 15) = 2
® select(S, 4) = 30



augmented data structures

For example, in the set of values S = {3,15,27,30,35,56}:

27)
G (39
1y G 6o

® rank(S, 15) = 2
® select(S, 4) = 30



AVL tree without modification

If we use AVL tree without modifications:
® To implement rank:

® in-order traversal, keeping track of the number of nodes
visited, until the desired key is reached

® To implement select:

® in-order traversal, keeping track of the number of nodes
visited, until the desired rank is reached

What is the complexity of rank? ©(n)

What is the complexity of select? ©(n)

Will operations search, insert, and delete need to
change? No



augmented AVL tree — attempt 1

Idea: store rank(T,n.key) in each node n in tree T.

® To implement rank (T, k):
® search for key k
® when found node n with n.key = k, return n.rank

® To implement select(T, r):

® search for rank r
® when found node n with n.rank = r, return n.key



augmented AVL tree — attempt 1

Idea: store rank(T,n.key) in each node n in tree T.

¢ What is the complexity of rank(T, k)? ©(logn)

® What is the complexity of select(T, r)? ©(logn)

® Will operations search, insert, and delete need to
change? Yes!

® insert and delete may need to update ranks of all other
nodes — ©(n)



augmented AVL tree — attempt 2

Idea: store size(n) — the number of nodes in subtree rooted at
n including n itself — for each node n.

Q. How is size related to rank?

Define relative rank rank(n, k) as rank of key k relative to the
keys in the tree rooted at node n.

rank(T, k) = 1 4+ number of keys in T less than k

rank(n, n.key) = 1 + size(n.left)



augmented AVL tree — rank

rank(T, k) — idea
® do search(T, k) keeping track of the rank computed so far

® at each move to the right, add size of left subtree we skipped
plus 1 for the key itself

e if found key in node n, add size(n.left) + 1 to rank so far, to
get the real rank

rank (T, 35):
® 35 > 27: go right

® rank is size(T.left) + 1 +
rank(T.right, 35)

° rank(@, 35):

® 35 = 35: found key

o 51ze(@ left) + 1

*2+1+1+1=5




augmented AVL tree — rank
rank(T, k) — idea
® do search(T, k) keeping track of the rank computed so far

® at each move to the right, add size of left subtree we skipped
plus 1 for the key itself

e if found key in node n, add size(n.left) + 1 to rank so far, to
get the real rank

rank (T, 15):
® 15 < 27: go left
® rank is rank(T.left, 15)
® 15 > 3: go right
® rank is size(@.left) +
1 + rank((3).right,15)

* rank((3).right,15) =
0+1=1

0 +1+1=2




augmented AVL tree — rank

rank (T, k) — pseudocode

if T == nil: # k not in T
deal with special case
if k == T.key:
return size(T.left) + 1
if k > T.key:
return size(T.left) + 1 + rank(T.right, k)
else:
return rank(T.left, k)

where

size(T) = 0 if T == nil else T.size

10



augmented AVL tree — select

select(T, r) — idea
® at each visited node n, compare r to size(n.left) + 1

e if equal, found the node: return n.key

e if <, then key with rank r is in left subtree

® relative rank in left subtree is the same
® |ook for rank r in n.left

® if >, then key with rank r is in the right subtree

® relative rank in the right subtree is r — (size(n.left) + 1)
® look for rank r — size(n.left) — 1 in n.right

11



augmented AVL tree — select

select(T, r) — idea

® at each visited node n, compare r to size(n.left) + 1

select (T, 5):
® size(T.left) + 1 =2 +
3 < b5: go right
® select(T.right, 5 - 3)

° select(@, 2):

° size(@.left) + 1 =
® found node! key is 35

1

2

12



augmented AVL tree — select

select(T, r) — idea

® at each visited node n, compare r to size(n.left) + 1

select (T, 2):
® size(T.left) + 1 =2 + 1 =
3 > 2: go left
® select(T.left, 2)
° select(@, 2):

* size((3).left)+1 = 1 <
go right
° select(@.right, 2 -1)

® select (@, 1):

° size(@.left) +1=1
® found node! key is 15

13



augmented AVL tree — select

select (T, r) — pseudocode

if T == nil: # r not in T
deal with special case
r' = size(T.left) + 1
if r ==r':
return T.key
if r <r':
return select(T.left, r)
else:
return select(T.right, r - r')

where

size(T) = 0 if == nil else T.size

14



augmented AVL tree — insert / delete

® insert(T, k, v):
if insert successful, for each node n on path from parent of
new node to root, n.size = n.size + 1

® delete(T, k):
after the node is removed (either x with x.key = k or its
successor), for each node n on path from parent of removed
node to root, n.size = n.size — 1

® rebalancing:
for each rotation, a constant number of nodes needs to be
updated

Therefore, each operation is ©(log n).

15



