CSCB63 Tutorial 1 — Asymptotic Bounds

1 common time complexity asymptotic upper bounds

Consider the following 2D table with column headers and row headers both being: $\ln(n)$, $\lg(n)$, $\lg(n^2)$, $(\lg n)^2$, n, $n \lg(n)$, 2^n , 2^{3n} . Recall that \lg is \log base 2 and \ln is natural logarithm (base e). In each cell (row, col) fill in Y if row's function is Big-Oh of col's function.

	ln(n)	$\lg(n)$	$\lg(n^2)$	$(\lg(n))^2$	n	$n \lg(n)$	2^n	2^{3n}
$\ln(n)$								
$\lg(n)$								
$\lg(n^2)$								
$(\lg(n))^2$								
\overline{n}								
$n \lg(n)$								
2^n								
2^{3n}								

As an exercise, prove transitivity of Big-Oh:

$$f \in O(g) \land g \in O(h) \Rightarrow f \in O(h)$$

Note that even though $3n \in O(n)$, we cannot "exponentiate both sides" to infer $2^{3n} \in O(2^n)$.

2 formal proofs of asymptotic upper bounds

We will show proofs for two entries in our Big-Oh table. We will use the Big-Oh definition directly.

- 1. Prove $n \in O(n \lg n)$.
- 2. Prove $n \lg(n) \notin O(n)$.

3 common time complexity asymptotic tight bounds

Now develop a similar table for Big-Theta: in each cell (row, col) fill in Y if row's function is Big-Theta of col's function.

	ln(n)	$\lg(n)$	$\lg(n^2)$	$(\lg(n))^2$	n	$n \lg(n)$	2^n	2^{3n}
ln(n)								
$\lg(n)$								
$\lg(n^2)$								
$(\lg(n))^2$								
\overline{n}								
$n \lg(n)$								
2^n								
2^{3n}								

4 optional exercises

- 1. Prove $6n^5+n^2-n^3\in\Theta(n^5)$ using the definition of Big-Theta.
- 2. Prove $3n^2-4n\in\Omega(n^2)$ using the definition of Big-Omega.