CSCB63 Tutorial 1 - Asymptotic Bounds

1 common time complexity asymptotic upper bounds

Consider the following 2D table with column headers and row headers both being: $\ln (n), \lg (n)$, $\lg \left(n^{2}\right),(\lg n)^{2}, n, n \lg (n), 2^{n}, 2^{3 n}$. Recall that \lg is \log base 2 and \ln is natural logarithm (base e). In each cell (row, col) fill in Y if row's function is Big-Oh of col's function.

	$\ln (n)$	$\lg (n)$	$\lg \left(n^{2}\right)$	$(\lg (n))^{2}$	n	$n \lg (n)$	2^{n}	$2^{3 n}$
$\ln (n)$	Y							
$\lg (n)$	Y							
$\lg \left(n^{2}\right)$	Y							
$(\lg (n))^{2}$				Y	Y	Y	Y	Y
n					Y	Y	Y	Y
$n \lg (n)$						Y	Y	Y
2^{n}						Y	Y	
$2^{3 n}$						Y		

As an exercise, prove transitivity of Big-Oh:

$$
f \in O(g) \wedge g \in O(h) \Rightarrow f \in O(h)
$$

Note that even though $3 n \in O(n)$, we cannot "exponentiate both sides" to infer $2^{3 n} \in O\left(2^{n}\right)$.

2 formal proofs of asymptotic upper bounds

We will show proofs for two entries in our Big-Oh table. We will use the Big-Oh definition directly.

1. Prove $n \in O(n \lg n)$.

Choose $c=1, n_{0}=2$. Then for all $n \geq n_{0}$:

$$
\begin{aligned}
& n \\
= & n * 1 \\
\leq & n * \lg (n) \\
= & c * n * \lg (n)
\end{aligned}
$$

Thus, $\exists c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow 0 \leq n \leq c * n * \lg (n)$.
2. Prove $n \lg (n) \notin O(n)$.

We will use proof by contradiction.
Suppose $\exists c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow 0 \leq n \lg (n) \leq c * n$.
Notice that replacing $\forall n \geq n_{0}$ with $\forall n \geq \max \left(n_{0}, 1\right)$ still gives a true statement since $\max \left(n_{0}, 1\right) \geq n_{0}$.

So, we have $\exists c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \max \left(n_{0}, 1\right) \Rightarrow 0 \leq n \lg (n) \leq c * n$.

The reason we made this replacement is because we want $n \geq 1$, to be able to divide by n :
For all $n \geq \max \left(n_{0}, 1\right)$:

$$
\begin{aligned}
& n \lg (n) \leq c * n \\
\Longleftrightarrow & \lg (n) \leq c \\
\Longleftrightarrow & n \leq 2^{c}
\end{aligned} \quad \text { divide both sides by } n
$$

So, we have $\exists c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq \max \left(n_{0}, 1\right) \Rightarrow n \leq 2^{c}$.
But there is clearly a counterexample: choosing $n=\max \left(n_{0}, 2^{c}+1\right)>2^{c}$ makes the statement above false. We get a contradiction.

3 common time complexity asymptotic tight bounds

Now develop a similar table for Big-Theta: in each cell (row, col) fill in Y if row's function is BigTheta of col's function.

	$\ln (n)$	$\lg (n)$	$\lg \left(n^{2}\right)$	$(\lg (n))^{2}$	n	$n \lg (n)$	2^{n}	$2^{3 n}$
$\ln (n)$	Y	Y	Y					
$\lg (n)$	Y	Y	Y					
$\lg \left(n^{2}\right)$	Y	Y	Y					
$(\lg (n))^{2}$				Y				
n					Y			
$n \lg (n)$						Y		
2^{n}							Y	
$2^{3 n}$								Y

4 optional exercises

1. Prove $6 n^{5}+n^{2}-n^{3} \in \Theta\left(n^{5}\right)$ using the definition of Big-Theta.
2. Prove $3 n^{2}-4 n \in \Omega\left(n^{2}\right)$ using the definition of Big-Omega.
