
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1



how long do things take

Remember this algorithm?

1 i = 1

2 while i < len(A):

3 v = A[i]

4 j = i

5 while j > 0 and A[j-1] > v:

6 A[j] = A[j-1]

7 j = j - 1

8 A[j] = v

9 i = i + 1

What do we count? Does it matter?

2



how long do things take

Let’s try counting this way:

• get/set variables: 1 step

• function call: 1 + steps to evaluate each argument + steps to
execute function

• return statement: 1 + steps to evaluate return value

• if/while condition: 1 + steps to evaluate the boolean
expression

• assignment statement: 1 + steps to evaluate each side

• arithmetic/comparison/boolean operators: 1 + steps to
evaluate each operand

• array access: 1 + steps to evaluate array index

• constants: free!

3



how long do things take

0 def InsertionSort (A): STEPS

1 i = 1 2

2 while i < len(A): 5

3 v = A[i] 5

4 j = i 3

5 while j > 0 and A[j-1] > v: 10 or 3

6 A[j] = A[j-1] 8

7 j = j - 1 4

8 A[j] = v 5

9 i = i + 1 4

What assumptions did we make? Are they realistic?

So, what’s the total number of steps?

4



how long do things take

In the worst case:

• line 1: once : 2 steps

For n ≥ 1:

• line 2: n − 1 times (true) + 1 time (false) : 5n steps

• lines 3, 4, 8, 9: n− 1 times : (5+3+5+4)(n− 1) = 17n− 17 steps

• line 5: for each i : i times (true) + 1 time (false) : 10i + 3 steps

• lines 6, 7: for each i : i times : (8 + 4)i = 12i steps

2 + 5n + 17n − 17 +
n−1∑
i=1

(10i + 3 + 12i)

=22n − 15 +
n−1∑
i=1

(22i + 3)

=22n − 15 + 22
(n − 1)n

2
+ 3(n − 1)

=11n2 + 14n − 18

5



how long do things take

In the best case:

• line 1: once : 2 steps

For n ≥ 1:

• line 2: n − 1 times (true) + 1 time (false) : 5n steps

• lines 3, 4, 8, 9: n − 1 times :
(5 + 3 + 5 + 4)(n − 1) = 17n − 17 steps

• line 5: for each i : 1 time (false) : 10 steps

• lines 6, 7: for each i : 0 times : 0 steps

2 + 5n + 17n − 17 +
n−1∑
i=1

10 = 22n − 15 + (n − 1)10

= 32n − 25

6



how long do things take

What if we write the same algorithm differently?

0 def InsertionSort (A):

1 n = len(A)

2 for (i = 1; i < n; i++):

3 for (j = i; j > 0 and A[j] < A[j-1]; j--):

4 swap A[j], A[j-1]

• line 1: once, 4 steps

For n ≥ 1:

• line 2: 1 step (once) + 2 steps (once) + 3 steps (n times) +
2 steps (n − 1 times)

• line 3: for each i : 1 step (once) + 3 steps (once) + 11 steps
(i times) + 2 steps (once) + 2 steps (i times)

• line 4: for each i : 9 steps (i times)

7



how long do things take

• line 1: once, 4 steps

For n ≥ 1:
• line 2: 1 step (once) + 2 steps (once) + 3 steps (n times) +
2 steps (n − 1 times)

• line 3: for each i : 1 step (once) + 3 steps (once) + 11 steps
(i times) + 2 steps (once) + 2 steps (i times)

• line 4: for each i : 9 steps (i times)

4 + 1 + 2 + 3n + 2(n − 1) +
n−1∑
i=1

(1 + 3 + 11i + 2 + 2i + 9i)

=5n + 5 +
n−1∑
i=1

(22i + 6)

=5n + 5 + 22
(n − 1)n

2
+ 6(n − 1)

=11n2 − 1

Is this the same running time? In what sense?
8



how long do things take

Q. What if I now run this algorithm on a machine that is slower to
perform variable look up and write?

Q. Should the complexity change?

Q. How important are those constants as the input size n gets
large?

Q. How are our two results 11n2 + 14n − 18 and 11n2 − 1 similar?

Q. They are both quadratic polynomials.

9



how long do things take

We say...

• that a quadratic polynomial is of order n2,

• that a cubic polynomial is of order n3,

• that 4n lg(n) + 2n + 10 is of order n lg(n).

Why can we say this? With a little mathemagic:

11n2 + 14n − 18 ≤ 11n2 + 14n ≤ 11n2 + 14n2 = 25n2

Another example:

11n2 − 21n + 19 ≤ 11n2 + 19 ≤ 11n2 + n ≤ 11n2 + n2 = 12n2

for all natural n ≥ 19

10



how long do things take — formally

For all natural n ≥ 19:

11n2 − 21n + 19 ≤ 12n2

There exists an n0 ∈ N such that, for all natural n ≥ n0,

11n2 − 21n + 19 ≤ 12n2

We can take this even further and say, there exists real c > 0 and
natural n0 such that, for all natural n ≥ n0,

11n2 − 21n + 19 ≤ c · n2

which is exactly the definition of “Big-Oh”!

11



Big-Oh — Asymptotic Upper Bound

We denote:

• N: the set of natural numbers

• R+: the set of positive real numbers

• F : the set of functions f : N → R+

Let g ∈ F . Define O(g) to be the set of functions f ∈ F such that

∃c ∈ R+, ∃n0 ∈ N,∀n ∈ N, n ≥ n0 ⇒ f (n) ≤ c · g(n)

12


