CSCB63 - Design and Analysis of Data Structures

Anya Tafliovich ${ }^{1}$

how long do things take

Remember this algorithm?

1	$i=1$
2	while $i<\operatorname{len}(A):$
3	$v=A[i]$
4	$j=i$
5	while $j>0$ and $A[j-1]>v:$
6	$A[j]=A[j-1]$
7	$j=j-1$
8	$A[j]=v$
9	$i=i+1$

What do we count? Does it matter?

how long do things take

Let's try counting this way:

- get/set variables: 1 step
- function call: $1+$ steps to evaluate each argument + steps to execute function
- return statement: $1+$ steps to evaluate return value
- if/while condition: $1+$ steps to evaluate the boolean expression
- assignment statement: $1+$ steps to evaluate each side
- arithmetic/comparison/boolean operators: $1+$ steps to evaluate each operand
- array access: $1+$ steps to evaluate array index
- constants: free!

how long do things take

0 def	InsertionSort (A) :	STEPS
1	i $=1$	2
2	while i < len(A):	5
3	$\mathrm{v}=\mathrm{A}$ [i]	5
4	j $=$ i	3
5	while $\mathrm{j}>0$ and $\mathrm{A}[\mathrm{j}-1]$ > v:	10 or 3
6	$\mathrm{A}[\mathrm{j}]=\mathrm{A}[\mathrm{j}-1]$	8
7	$\mathrm{j}=\mathrm{j}-1$	4
8	$\mathrm{A}[\mathrm{j}]=\mathrm{v}$	5
9	$\mathrm{i}=\mathrm{i}+1$	4

What assumptions did we make? Are they realistic?

So, what's the total number of steps?

how long do things take

In the worst case:

- line 1: once: 2 steps

For $n \geq 1$:

- line 2: $n-1$ times (true) +1 time (false): $5 n$ steps
- lines $3,4,8,9: n-1$ times : $(5+3+5+4)(n-1)=17 n-17$ steps
- line 5: for each i : i times (true) +1 time (false) : $10 i+3$ steps
- lines 6, 7: for each $i: i$ times : $(8+4) i=12 i$ steps

$$
\begin{aligned}
& 2+5 n+17 n-17+\sum_{i=1}^{n-1}(10 i+3+ \\
= & 22 n-15+\sum_{i=1}^{n-1}(22 i+3) \\
= & 22 n-15+22 \frac{(n-1) n}{2}+3(n-1) \\
= & 11 n^{2}+14 n-18
\end{aligned}
$$

how long do things take

In the best case:

- line 1: once : 2 steps

For $n \geq 1$:

- line 2: $n-1$ times (true) +1 time (false) : $5 n$ steps
- lines $3,4,8,9: n-1$ times :

$$
(5+3+5+4)(n-1)=17 n-17 \text { steps }
$$

- line 5: for each $i: 1$ time (false) : 10 steps
- lines 6, 7: for each i : 0 times: 0 steps

$$
\begin{aligned}
2+5 n+17 n-17+\sum_{i=1}^{n-1} 10 & =22 n-15+(n-1) 10 \\
& =32 n-25
\end{aligned}
$$

how long do things take

What if we write the same algorithm differently?
0 def InsertionSort (A):
$1 \quad \mathrm{n}=\operatorname{len}(\mathrm{A})$
2 for (i = 1; i < n; i++):
3 for (j = i; j > 0 and $A[j]<A[j-1] ; j--):$
4 swap A[j], A[j-1]

- line 1: once, 4 steps

For $n \geq 1$:

- line 2: 1 step (once) +2 steps (once) +3 steps (n times) + 2 steps ($n-1$ times)
- line 3: for each i : 1 step (once) +3 steps (once) +11 steps (i times) +2 steps (once) +2 steps (i times)
- line 4: for each i : 9 steps (i times)

how long do things take

- line 1: once, 4 steps

For $n \geq 1$:

- line 2: 1 step (once) +2 steps (once) +3 steps (n times) + 2 steps ($n-1$ times)
- line 3: for each i : 1 step (once) +3 steps (once) +11 steps (i times) +2 steps (once) +2 steps (i times)
- line 4: for each $i: 9$ steps (i times)

$$
\begin{aligned}
& 4+1+2+3 n+2(n-1)+\sum_{i=1}^{n-1}(1+3+11 i+2+2 i+9 i) \\
= & 5 n+5+\sum_{i=1}^{n-1}(22 i+6) \\
= & 5 n+5+22 \frac{(n-1) n}{2}+6(n-1) \\
= & 11 n^{2}-1
\end{aligned}
$$

Is this the same running time? In what sense?

how long do things take

Q. What if I now run this algorithm on a machine that is slower to perform variable look up and write?
Q. Should the complexity change?
Q. How important are those constants as the input size n gets large?
Q. How are our two results $11 n^{2}+14 n-18$ and $11 n^{2}-1$ similar?
Q. They are both quadratic polynomials.

how long do things take

We say...

- that a quadratic polynomial is of order n^{2},
- that a cubic polynomial is of order n^{3},
- that $4 n \lg (n)+2 n+10$ is of order $n \lg (n)$.

Why can we say this? With a little mathemagic:

$$
11 n^{2}+14 n-18 \leq 11 n^{2}+14 n \leq 11 n^{2}+14 n^{2}=25 n^{2}
$$

Another example:

$$
11 n^{2}-21 n+19 \leq 11 n^{2}+19 \leq 11 n^{2}+n \leq 11 n^{2}+n^{2}=12 n^{2}
$$

for all natural $n \geq 19$

how long do things take - formally

For all natural $n \geq 19$:

$$
11 n^{2}-21 n+19 \leq 12 n^{2}
$$

There exists an $n_{0} \in \mathbb{N}$ such that, for all natural $n \geq n_{0}$,

$$
11 n^{2}-21 n+19 \leq 12 n^{2}
$$

We can take this even further and say, there exists real $c>0$ and natural n_{0} such that, for all natural $n \geq n_{0}$,

$$
11 n^{2}-21 n+19 \leq c \cdot n^{2}
$$

which is exactly the definition of "Big-Oh"!

Big-Oh - Asymptotic Upper Bound

We denote:

- \mathbb{N} : the set of natural numbers
- \mathbb{R}^{+}: the set of positive real numbers
- \mathcal{F} : the set of functions $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$

Let $g \in \mathcal{F}$. Define $\mathcal{O}(g)$ to be the set of functions $f \in \mathcal{F}$ such that

$$
\exists c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow f(n) \leq c \cdot g(n)
$$

Big-Oh - Asymptotic Upper Bound

Let $g \in \mathcal{F}$. Define $\mathcal{O}(g)$ to be the set of functions $f \in \mathcal{F}$ such that

$$
\exists c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow f(n) \leq c \cdot g(n)
$$

Let's practice proving a function belongs to big-Oh of another function.

Big-Oh practice

Suppose we determine an algorithm has running time

$$
T(n)=n^{3}-n^{2}+5
$$

Prove. $T(n) \in O\left(n^{3}\right)$

$$
n^{3}-n^{2}+5 \leq n^{3}+5
$$

When $n \geq 5$,

$$
n^{3}+5 \leq n^{3}+n \leq n^{3}+n^{3}=2 n^{3}
$$

Let $n_{0}=5$ and $c=2$ so that $f \in O\left(n^{3}\right)$.

Is Big-Oh good enough?

Q. Is $12 n^{2}+10 n+10 \in O\left(n^{3}\right)$?
Q. Is $12 n^{2}+10 n+10 \in O\left(n^{2} \lg n\right)$?
Q. Is $n \in O\left(n^{2}\right)$?
Q. Is $3 \in O\left(n^{2}\right)$?
$O\left(n^{2}\right)$ includes quadratic functions and "lesser" functions as well.

We need another definition to exclude "lesser" functions.

Big- Ω - Asymptotic Lower Bound

Idea. Want a function g such that for big enough n,

$$
0 \leq b \cdot g(n) \leq f(n)
$$

where b is a constant.

"Big Omega." Let $g \in \mathcal{F}$. Define $\Omega(g)$ to be the set of functions $f \in \mathcal{F}$ such that

$$
\exists b \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow f(n) \geq b \cdot g(n) \geq 0
$$

Equivalently, $f \in \Omega(g)$ iff $g \in O(f)$.

Big- Θ - Asymptotic Tight Bound

What if it's both?
If $f \in O(g)$ and $f \in \Omega(g)$ then we say that $f \in \Theta(g)$.
"Big Theta". Let $g \in \mathcal{F}$. Define $\Theta(g)$ to be the set of functions $f \in \mathcal{F}$ such that $f \in O(g) \cap \Omega(g)$
or alternatively,

$$
\begin{aligned}
& \exists b \in \mathbb{R}^{+}, \exists c \in \mathbb{R}^{+}, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}, \\
& n \geq n_{0} \Rightarrow 0 \leq b \cdot g(n) \leq f(n) \leq c \cdot g(n)
\end{aligned}
$$

Big- Θ practice

Show: $11 n^{2}+14 n-18 \in \Theta\left(n^{2}\right)$

Let $f(n)=n^{3}-n^{2}+5$. Show: $f \in \Theta\left(n^{3}\right)$

Show: $n \notin \Theta\left(n^{2}\right)$

in summary

- concerned about the efficiency of an algorithm as the input size gets large
- not concerned about small constants as these are machine dependent
- therefore, use asymptotic notation: $\mathcal{O}, \Omega, \Theta$

using limits to prove $\mathrm{Big}-\mathrm{O}$

Assume. $\exists n_{0} \in \mathbb{N}: \forall n \geq n_{0}: f(n) \geq 0$ and $g(n)>0$.
Theorem. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ exists and is finite, then $f \in O(g)$.
Example. Prove $n(n+1) / 2 \in O\left(n^{2}\right)$

$$
\lim _{n \rightarrow \infty} \frac{n(n+1) / 2}{n^{2}}=\frac{1}{2}
$$

Example. Prove $\ln (n) \in O(n)$

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\lim _{n \rightarrow \infty} \frac{1 / n}{1}=0
$$

using limits to disprove $\mathrm{Big}-\mathrm{O}$

Assume. $\exists n_{0} \in \mathbb{N}: \forall n \geq n_{0}: f(n) \geq 0$ and $g(n)>0$.
Theorem. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$, then $f \notin O(g)$.
Example. Disprove $n^{2} \in O(n)$

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{n}=\lim _{n \rightarrow \infty} n=\infty
$$

Example. Disprove $n \in O(\ln (n))$

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln (n)}=\lim _{n \rightarrow \infty} \frac{1}{1 / n}=\lim _{n \rightarrow \infty} n=\infty
$$

when limits don't help

Theorem. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ exists and is finite, then \ldots
Theorem. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$, then \ldots
Q. Which case is not covered?
A. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ does not exist and is not ∞, then no conclusion. (Hopefully this happens rarely.)
Q. Can you think of a function crazy where limits do not help to show crazy $\notin O(1)$?

when limits don't help

Q. Can you think of a function crazy where limits do not help to show crazy $\notin O(1)$?
A. Define

$$
\operatorname{crazy}(n)= \begin{cases}1 & \text { if } \mathrm{n} \text { is even } \\ n & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

Then crazy $\in O(n)$ and crazy $\notin O(1)$, but

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\operatorname{crazy}(n)}{n} \\
& \lim _{n \rightarrow \infty} \frac{\operatorname{crazy}(n)}{1}
\end{aligned}
$$

using limits for Θ

Theorem. $f \in \Theta(g)$ iff $f \in O(g)$ and $g \in O(f)$.
(Handy when you want to use limits!)

Example. $n^{2}+n^{3 / 2} \in \Theta\left(n^{2}\right)$

- prove $n^{2}+n^{3 / 2} \in O\left(n^{2}\right)$ by using a limit
- prove $n^{2} \in O\left(n^{2}+n^{3 / 2}\right)$ by using a limit

Example. $\ln (n) \notin \Theta(n)$

- prove $n \notin O(\ln (n))$ by using a limit

Big- O, Big- - may miss something

Q. Can the $\operatorname{Big}-O$ definition be not at all useful?
A.

$$
\begin{gathered}
n+10^{100} \in \Theta(n) \\
10^{100} n \in \Theta(n)
\end{gathered}
$$

Can't say these are practical algorithm times, but O, Θ can't tell.
This is a price for ignoring constants (which we want to account for machine differences!)

Such pathological cases are rare. O and Θ are usually informative.

Myth Buster

Myth: O means worst-case time, Ω means best-case.

Truth: O, Ω, Θ classify functions, do not say what the functions stand for.
$9 n^{2}+4 n+13$ may be best-case time, or worst-case time, or best-case space, or worst-case space, or just a polynomial from nowhere.
"Best case time is in $O\left(n^{2}\right)$ " means:
Best case time is some function, that function is in $O\left(n^{2}\right)$. Clearly a sensible statement and possible scenario.
O, Ω, Θ are good for any function from natural to non-negative real.

