
CSCB63 – Design and Analysis of Data
Structures

Anya Tafliovich1

1based on notes by Anna Bretscher and Albert Lai
1



how long do things take

Remember this algorithm?

1 i = 1

2 while i < len(A):

3 v = A[i]

4 j = i

5 while j > 0 and A[j-1] > v:

6 A[j] = A[j-1]

7 j = j - 1

8 A[j] = v

9 i = i + 1

What do we count? Does it matter?

2



how long do things take

Let’s try counting this way:

• get/set variables: 1 step

• function call: 1 + steps to evaluate each argument + steps to
execute function

• return statement: 1 + steps to evaluate return value

• if/while condition: 1 + steps to evaluate the boolean
expression

• assignment statement: 1 + steps to evaluate each side

• arithmetic/comparison/boolean operators: 1 + steps to
evaluate each operand

• array access: 1 + steps to evaluate array index

• constants: free!

3



how long do things take

0 def InsertionSort (A): STEPS

1 i = 1 2

2 while i < len(A): 5

3 v = A[i] 5

4 j = i 3

5 while j > 0 and A[j-1] > v: 10 or 3

6 A[j] = A[j-1] 8

7 j = j - 1 4

8 A[j] = v 5

9 i = i + 1 4

What assumptions did we make? Are they realistic?

So, what’s the total number of steps?

4



how long do things take

In the worst case:

• line 1: once : 2 steps

For n ≥ 1:

• line 2: n − 1 times (true) + 1 time (false) : 5n steps

• lines 3, 4, 8, 9: n− 1 times : (5+3+5+4)(n− 1) = 17n− 17 steps

• line 5: for each i : i times (true) + 1 time (false) : 10i + 3 steps

• lines 6, 7: for each i : i times : (8 + 4)i = 12i steps

2 + 5n + 17n − 17 +
n−1∑
i=1

(10i + 3 + 12i)

=22n − 15 +
n−1∑
i=1

(22i + 3)

=22n − 15 + 22
(n − 1)n

2
+ 3(n − 1)

=11n2 + 14n − 18

5



how long do things take

In the best case:

• line 1: once : 2 steps

For n ≥ 1:

• line 2: n − 1 times (true) + 1 time (false) : 5n steps

• lines 3, 4, 8, 9: n − 1 times :
(5 + 3 + 5 + 4)(n − 1) = 17n − 17 steps

• line 5: for each i : 1 time (false) : 10 steps

• lines 6, 7: for each i : 0 times : 0 steps

2 + 5n + 17n − 17 +
n−1∑
i=1

10 = 22n − 15 + (n − 1)10

= 32n − 25

6



how long do things take

What if we write the same algorithm differently?

0 def InsertionSort (A):

1 n = len(A)

2 for (i = 1; i < n; i++):

3 for (j = i; j > 0 and A[j] < A[j-1]; j--):

4 swap A[j], A[j-1]

• line 1: once, 4 steps

For n ≥ 1:

• line 2: 1 step (once) + 2 steps (once) + 3 steps (n times) +
2 steps (n − 1 times)

• line 3: for each i : 1 step (once) + 3 steps (once) + 11 steps
(i times) + 2 steps (once) + 2 steps (i times)

• line 4: for each i : 9 steps (i times)

7



how long do things take

• line 1: once, 4 steps

For n ≥ 1:
• line 2: 1 step (once) + 2 steps (once) + 3 steps (n times) +
2 steps (n − 1 times)

• line 3: for each i : 1 step (once) + 3 steps (once) + 11 steps
(i times) + 2 steps (once) + 2 steps (i times)

• line 4: for each i : 9 steps (i times)

4 + 1 + 2 + 3n + 2(n − 1) +
n−1∑
i=1

(1 + 3 + 11i + 2 + 2i + 9i)

=5n + 5 +
n−1∑
i=1

(22i + 6)

=5n + 5 + 22
(n − 1)n

2
+ 6(n − 1)

=11n2 − 1

Is this the same running time? In what sense?
8



how long do things take

Q. What if I now run this algorithm on a machine that is slower to
perform variable look up and write?

Q. Should the complexity change?

Q. How important are those constants as the input size n gets
large?

Q. How are our two results 11n2 + 14n − 18 and 11n2 − 1 similar?

Q. They are both quadratic polynomials.

9



how long do things take

We say...

• that a quadratic polynomial is of order n2,

• that a cubic polynomial is of order n3,

• that 4n lg(n) + 2n + 10 is of order n lg(n).

Why can we say this? With a little mathemagic:

11n2 + 14n − 18 ≤ 11n2 + 14n ≤ 11n2 + 14n2 = 25n2

Another example:

11n2 − 21n + 19 ≤ 11n2 + 19 ≤ 11n2 + n ≤ 11n2 + n2 = 12n2

for all natural n ≥ 19

10



how long do things take — formally

For all natural n ≥ 19:

11n2 − 21n + 19 ≤ 12n2

There exists an n0 ∈ N such that, for all natural n ≥ n0,

11n2 − 21n + 19 ≤ 12n2

We can take this even further and say, there exists real c > 0 and
natural n0 such that, for all natural n ≥ n0,

11n2 − 21n + 19 ≤ c · n2

which is exactly the definition of “Big-Oh”!

11



Big-Oh — Asymptotic Upper Bound

We denote:

• N: the set of natural numbers

• R+: the set of positive real numbers

• F : the set of functions f : N → R+

Let g ∈ F . Define O(g) to be the set of functions f ∈ F such that

∃c ∈ R+, ∃n0 ∈ N,∀n ∈ N, n ≥ n0 ⇒ f (n) ≤ c · g(n)

12



Big-Oh — Asymptotic Upper Bound

Let g ∈ F . Define O(g) to be the set of functions f ∈ F such that

∃c ∈ R+, ∃n0 ∈ N,∀n ∈ N, n ≥ n0 ⇒ f (n) ≤ c · g(n)

Let’s practice proving a function belongs to big-Oh of another
function.

13



Big-Oh practice

Suppose we determine an algorithm has running time

T (n) = n3 − n2 + 5

Prove. T (n) ∈ O(n3)

n3 − n2 + 5 ≤ n3 + 5

When n ≥ 5,

n3 + 5 ≤ n3 + n ≤ n3 + n3 = 2n3

Let n0 = 5 and c = 2 so that f ∈ O(n3).

14



Is Big-Oh good enough?

Q. Is 12n2 + 10n + 10 ∈ O(n3)?

Q. Is 12n2 + 10n + 10 ∈ O(n2 lg n) ?

Q. Is n ∈ O(n2)?

Q. Is 3 ∈ O(n2)?

O(n2) includes quadratic functions and “lesser” functions as well.

We need another definition to exclude “lesser” functions.

15



Big-Ω — Asymptotic Lower Bound

Idea. Want a function g such that for big enough n,

0 ≤ b · g(n) ≤ f (n)

where b is a constant.

“Big Omega.” Let g ∈ F . Define Ω(g) to be the set of functions
f ∈ F such that

∃b ∈ R+, ∃n0 ∈ N,∀n ∈ N, n ≥ n0 ⇒ f (n) ≥ b · g(n) ≥ 0

Equivalently, f ∈ Ω(g) iff g ∈ O(f ).

16



Big-Θ — Asymptotic Tight Bound

What if it’s both?
If f ∈ O(g) and f ∈ Ω(g) then we say that f ∈ Θ(g).

“Big Theta”. Let g ∈ F . Define Θ(g) to be the set of functions
f ∈ F such that f ∈ O(g) ∩ Ω(g)

or alternatively,

∃b ∈ R+, ∃c ∈ R+,∃n0 ∈ N, ∀n ∈ N,
n ≥ n0 ⇒ 0 ≤ b · g(n) ≤ f (n) ≤ c · g(n)

17



Big-Θ practice

Show: 11n2 + 14n − 18 ∈ Θ(n2)

Let f (n) = n3 − n2 + 5. Show: f ∈ Θ(n3)

Show: n /∈ Θ(n2)

18



in summary

• concerned about the efficiency of an algorithm as the input
size gets large

• not concerned about small constants as these are machine
dependent

• therefore, use asymptotic notation: O,Ω,Θ

19



using limits to prove Big-O

Assume. ∃n0 ∈ N : ∀n ≥ n0 : f (n) ≥ 0 and g(n) > 0.

Theorem. If limn→∞
f (n)
g(n) exists and is finite, then f ∈ O(g).

Example. Prove n(n + 1)/2 ∈ O(n2)

lim
n→∞

n(n + 1)/2

n2
=

1

2

Example. Prove ln(n) ∈ O(n)

lim
n→∞

ln(n)

n
= lim

n→∞

1/n

1
= 0

20



using limits to disprove Big-O

Assume. ∃n0 ∈ N : ∀n ≥ n0 : f (n) ≥ 0 and g(n) > 0.

Theorem. If limn→∞
f (n)
g(n) = ∞, then f /∈ O(g).

Example. Disprove n2 ∈ O(n)

lim
n→∞

n2

n
= lim

n→∞
n = ∞

Example. Disprove n ∈ O(ln(n))

lim
n→∞

n

ln(n)
= lim

n→∞

1

1/n
= lim

n→∞
n = ∞

21



when limits don’t help

Theorem. If limn→∞
f (n)
g(n) exists and is finite, then . . .

Theorem. If limn→∞
f (n)
g(n) = ∞, then . . .

Q. Which case is not covered?

A. If limn→∞
f (n)
g(n) does not exist and is not ∞, then no conclusion.

(Hopefully this happens rarely.)

Q. Can you think of a function crazy where limits do not help to
show crazy ̸∈ O(1)?

22



when limits don’t help

Q. Can you think of a function crazy where limits do not help to
show crazy ̸∈ O(1)?

A. Define

crazy(n) =

{
1 if n is even

n if n is odd

Then crazy ∈ O(n) and crazy /∈ O(1), but

lim
n→∞

crazy(n)

n
does not exist and is not ∞

lim
n→∞

crazy(n)

1
does not exist and is not ∞

23



using limits for Θ

Theorem. f ∈ Θ(g) iff f ∈ O(g) and g ∈ O(f ).

(Handy when you want to use limits!)

Example. n2 + n3/2 ∈ Θ(n2)

• prove n2 + n3/2 ∈ O(n2) by using a limit

• prove n2 ∈ O(n2 + n3/2) by using a limit

Example. ln(n) /∈ Θ(n)

• prove n /∈ O(ln(n)) by using a limit

24



Big-O, Big-Θ may miss something

Q. Can the Big-O definition be not at all useful?

A.
n + 10100 ∈ Θ(n)

10100n ∈ Θ(n)

Can’t say these are practical algorithm times, but O, Θ can’t tell.

This is a price for ignoring constants (which we want to account
for machine differences!)

Such pathological cases are rare. O and Θ are usually informative.

25



Myth Buster

Myth: O means worst-case time, Ω means best-case.

Truth: O, Ω, Θ classify functions, do not say what the functions
stand for.

9n2 + 4n + 13 may be best-case time, or worst-case time, or
best-case space, or worst-case space, or just a polynomial from
nowhere.

“Best case time is in O(n2)” means:
Best case time is some function, that function is in O(n2).
Clearly a sensible statement and possible scenario.
O, Ω, Θ are good for any function from natural to non-negative
real.

26


