Physics II for the Physical Sciences

PHY A21 - Summer 2018

Tuesday 10:00 am - 12:00 pm MW 110 Social Sciences Building
Thursday 10:00 am - 11:00 am MW 120 Social Sciences Building

\[
\begin{align*}
\nabla \cdot \mathbf{E} &= 0 \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= +\frac{\partial \mathbf{E}}{\partial t}
\end{align*}
\]

... and there was light.

Instructor: Johann Bayer
Office: SW 503B
Email: jbayer@utsc.utoronto.ca
Phone Number: 416-287-7327

Course Website: PHYA21 on Bb/Portal
Practical Sessions: 3 hours/week
Leaders & Schedule: Practicals on Bb/Portal

Office Hours

<table>
<thead>
<tr>
<th>Wednesday</th>
<th>10:30 am - 12:30 am</th>
<th>2:30 pm - 3:30 pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday</td>
<td>11:30 am - 1:30 pm</td>
<td></td>
</tr>
</tbody>
</table>

What is Light?

Our first answer to this question will come from our studies of Waves and Electromagnetism. Further queries on the nature of light will take us into Special Relativity. By the end of the term, we will be ready for follow-up courses in Quantum Mechanics where various questions regarding light and associated phenomena will lead us into the fields of atomic and nuclear physics.

By the end of the course you will be able to:

- Identify and define the basic vocabulary used in the study of Wave motion and related phenomena, Electricity and Magnetism, and Special Relativity.

- Use techniques of analytical and numerical problem solving that go beyond “plug-in-the-formula”.

- Interpret and give examples of the physical laws governing electric and magnetic interactions, electromagnetic waves, and relativistic phenomena.

- Recognize the important change in paradigm that led to the development Special Relativity and the beginning of what is known as Modern Physics.

- Using mathematics as the basic scientific language, employ techniques of single-variable calculus to model, simplify, and solve physical problems.

- Employ individual and group problem-solving skills to the analysis of physical systems, in the form of: experiments, conceptual and phenomenological questions, and multi-concept detailed problems.

- Recognize the existence of a basic model for the study of Physics, and translate this model into tools and learning skills useful in other disciplines.

- Develop strategies to implement the acquired organization, study, and discipline skills learned in the course to future academic and professional areas.
Course Requisites & Required Materials

Course Corequisite: Calculus II (MATA35/36/37)
Course Pre-requisites: Introduction to Physics IA (PHYA10), Calculus I (MATA30/31)

- **Textbook:** *Physics for Scientists and Engineers* by Randall D. Knight (Pearson, 4th Ed.)

The schedule provided at the end of this document indicates the readings you must complete **before** each lecture. The reading quizzes and in-class participation will be based on these assigned readings.

Your first time reading the assigned material does not need to be highly detailed. Focus on the main concepts, read one or two examples, and browse quickly through any derivations. This first reading will be the assumed starting point for all lectures. Therefore, failing to complete the readings and associated reading quizzes will impair your ability to understand our lecture discussions.

The textbook also provides the conceptual questions and detailed problems that will be the subject of the weekly online homework and practical work.

Additionally, please note that you will need an access code to **MasteringPhysics**, either through a bundled textbook or bought separately from the bookstore, in order to access and complete the weekly reading quizzes and homework.

- **Automated Student Response System:** *i>clicker* or *i>clicker+* by Macmillan

 You will need a clicker to answer the in-class participation quizzes. To receive the participation mark you must register your clicker by **Monday, May 21**. Instructions are available on the course website.

Note that in order to receive this participation mark you must be present with your clicker during the lecture discussions. Having somebody else use your clicker in your place or using somebody else’s clicker in their place is a serious academic offence that could have you facing expulsion from the university.

- **Calculator:**

 Casio: FX-260, FX-300*
 Texas Instruments: TI-30X IIS, TI-30XS
 Sharp: EL-520*, EL-531*, EL-W535*

 For the course, any **scientific** and **non-programmable** calculator will be required. The models listed above are some of those available at the bookstore that satisfy the course requirements. The asterisk “*” indicates that any sub-model within that specific model designation is also accepted.

Grading Scheme

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Quizzes</td>
<td>5</td>
<td>Ongoing (Pre-Lecture)</td>
</tr>
<tr>
<td>Participation</td>
<td>5</td>
<td>Ongoing (Lecture)</td>
</tr>
<tr>
<td>Online Homework</td>
<td>5</td>
<td>Ongoing (Weekly)</td>
</tr>
<tr>
<td>Practical Sessions</td>
<td>20</td>
<td>Ongoing (Weekly Practicals)</td>
</tr>
<tr>
<td>Test #1</td>
<td>10</td>
<td>Week 6 (Tentative)</td>
</tr>
<tr>
<td>Test #2</td>
<td>20</td>
<td>Week 10 (Tentative)</td>
</tr>
<tr>
<td>Final Examination</td>
<td>35</td>
<td>Exam Period (August 11 - 24)</td>
</tr>
</tbody>
</table>
Grade Components

Reading Quizzes (5%)
Before each Tuesday lecture, on MasteringPhysics, you will be asked a set of questions from the assigned textbook readings for the week. You will have until 11:55 pm on Monday to submit your answers. Each quiz is worth 5 points, and your final grade is the total sum of all quizzes up to a maximum of 50 points. Use the Class Schedule and quiz instructions to prepare for the lectures and reading quizzes.

Participation (5%)
During each lecture we will work on clicker questions from the textbook readings and the lecture presentation. During each lecture 1 point can be earned by answering at least 75% of the questions asked. The total sum of all lecture points makes up your participation grade up to a maximum of 20 points. In addition, after each lecture one participation question will be selected for a performance bonus. An extra 1% will be awarded to those students that correctly answer 50% or more of the performance questions.

Online Homework (5%)
These will be a weekly set of questions posted on MasteringPhysics. The questions will be based on the previous week’s textbook reading material and lecture discussions. Each homework is worth 10 points, and your final grade is the average of the best 10 results. A mix of conceptual questions and applied problem-solving exercises will be included. Do not spend more than two hours on each homework.

Practical Sessions (20%)
In these three-hour weekly sessions you will work in groups in order to discuss examples derived from the concepts introduced in your textbook readings and lecture presentations. Groups will apply these concepts and principles, in order to develop skills useful in scientific conceptual analysis and general problem-solving. Further work will focus on the development of experimental techniques related to Physics and the Scientific Method. The practical grade will depend on group activities and experiment-based lab reports written in collaboration with your assigned group.

Attendance to the practicals is mandatory and a deduction to your final practical grade will be applied should you miss a session. More information will be provided during your first practical session (second week of classes) and on the course website.

Test #1 (10%)
The first test will be scheduled during Week 6 and it will be 1 hour long. This test will feature the material from the lectures and textbook readings up to and including the discussions of Week 5. The questions will also be based on the practical activities and online homework up to and including material due on Week 5. The format includes only multiple-choice questions. The only aids allowed are your non-programmable scientific calculator, and a hand-written, double-sided, and letter-sized aid sheet. Photocopies or computer printouts are not allowed.

Test #2 (20%)
The second test will be scheduled during Week 10 and it will be 2 hours long. This test will feature the material from the lectures and textbook readings up to and including the discussions of Week 9. The questions and problems will also be based on the practical activities and online homework up to and including material due on Week 9. The format includes multiple-choice questions as well as detailed problems. The only aids allowed are your non-programmable scientific calculator, and a hand-written, double-sided, and letter-sized aid sheet. Photocopies or computer printouts are not allowed.
Final Examination (35%)
The final examination will be scheduled during the exam period of **August 11 - 24**. Material for the final examination will include all the topics discussed in the assigned textbook readings, lecture presentations, online homework, and practical sessions. The final examination will be **3 hours** long and the format includes multiple-choice questions as well as detailed problems. The only aids allowed are your non-programmable scientific calculator, and a hand-written, double-sided, and letter-sized aid sheet. Photocopies or computer printouts are not allowed.

Class Policies

Name and Student Number
Any work you hand in must clearly indicate your name and student number, this includes practical activities, formal reports, tests, and the final exam. Any work you submit that fails to meet this requirement will be penalized with a 10% deduction, provided we are able to identify the work as yours. If we are unable to identify the work as yours, a grade of zero will be awarded.

In-class Conduct

- Class starts at 10:10 am, and ends at 12:00 pm on Tuesday and 11:00 am on Thursday. Late arrival or early departure from class is inappropriate and will negatively affect your participation grade.

- Regarding anything that you want to use in the classroom: if you are not using it to perform a task specifically related to what we are doing in class at that very moment, you must put it away. This includes but is not limited to cell phones, laptop computers, tablets, and other electronic devices.

- Do not bring food into the classroom as this creates unwanted distractions that will negatively affect the learning environment. Be considerate to your peers.

e-mail
If you want to ask a question via e-mail, please first check the electronic forums in the Discussion Board of the course website. Quite likely, you are not the only person with that same question, and if that question has already been asked, you will find the answer there. If the question has not been asked, go ahead and post it yourself instead of sending it by e-mail. This way you will also help other students facing the same issue. The forums in the discussion board are monitored regularly by the course instructor and your peers, making it the best way of communicating for various queries of a diverse nature.

However, if the electronic forums are not the best place for your query, make sure you send your e-mail from an official utoronto.ca address (e.g., your UTmail+ account), as all other addresses will be filtered out automatically. Furthermore, include the code PHYA21 somewhere in the subject line of your message, to ensure a quicker response time. I respond to e-mails within a period of 24 hours and I rarely reply to e-mails during weekends.

Absences
In order to ensure fairness in the assessment of all students, there will be no makeup options for practical activities, formal reports, or the tests. In the case of a **valid and documented** problem that supports an absence to a practical session, the grade will be calculated on the basis of all other submitted work. In the case of a **valid and documented** problem that supports an absence to the first test, the second test will have its weight increased accordingly. In the case of a **valid and documented** problem that supports an absence to the second test, the final examination will have its weight increased accordingly. If the problem is health-related you must use the official form available [here](#) on the Registrar’s Website.
Academic Integrity and Respect for the Academic Endeavor

Academic integrity is essential to the pursuit of learning and scholarship in a university, and to ensuring that a degree from the University of Toronto is a strong signal of each student’s individual academic achievement. As a result, the University treats cases of cheating and plagiarism very seriously. The University of Toronto's Code of Behaviour on Academic Matters:

http://www.governingcouncil.utoronto.ca/policies/behaveac.htm

outlines the behaviours that constitute academic dishonesty and the processes for addressing academic offences. Potential offences include, but are not limited to:

- In papers and assignments: Using someone else’s ideas or words without appropriate acknowledgment; submitting your own work in more than one course without the permission of the instructor; making up sources or facts; obtaining or providing unauthorized assistance on any assignment; using someone else’s clicker or multiple clickers for participation grades.

- On tests and exams: Using or possessing unauthorized aids; looking at someone else’s answers during an exam or test; misrepresenting your identity.

- In academic work: Falsifying institutional documents or grades; falsifying or altering any documentation required by the University, including (but not limited to) doctor’s notes.

All suspected cases of academic dishonesty will be investigated following procedures outlined in the Code of Behaviour on Academic Matters. If you have questions or concerns about what constitutes appropriate academic behaviour or appropriate research and citation methods, you are expected to seek out additional information on academic integrity from your instructor or from other institutional resources (see http://sites.utoronto.ca/academicintegrity/resourcesforstudents.html).

Course Support

AccessAbility

Students with diverse learning styles and needs are welcome in this course. In particular, if you have a disability/health consideration that may require accommodations, please feel free to approach me and/or the AccessAbility Services Office as soon as possible.

I will work with you and AccessAbility Services to ensure you can achieve your learning goals in this course. Enquiries are confidential. The UTSC AccessAbility Services staff (located in SW302) are available by appointment to assess specific needs, provide referrals and arrange appropriate accommodations (416) 287-7560 or ability@utsc.utoronto.ca

Discussion Board

The course website supports electronic forums useful for questions and discussions on course content, conceptual and detailed problems, textbook readings, as well as any issues relating to administrative details of the course such as deadlines, future topics, and scheduling.

It is recommended that you check the forums on a regular basis to keep on top of current issues. You can subscribe to the various forums in order to receive email notifications when new posts are available, and there are also options for posting anonymously.
This schedule is *tentative* and might change during the term in order to accommodate for variations in the lecture discussions in response to student performance and understanding of the various topics.

Please note that it is your responsibility to read the assigned sections and chapters **before** each lecture.

The lecture discussions will **not** be a direct repetition of the basic material found in the textbook.

Failing to complete the readings before each lecture will hinder your ability to understand the class discussions, as a minimum understanding of the basic concepts from the assigned readings will be assumed as the starting point for all lecture discussions.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Tuesday Lectures</th>
<th>Thursday Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10am - 11am / 11am - 12pm</td>
<td>10am - 11am</td>
</tr>
<tr>
<td>May 08</td>
<td>1D-Waves Ch.16: 1 - 3</td>
<td>Intensity and Doppler Effect Ch.16: 7 - 9</td>
</tr>
<tr>
<td>May 10</td>
<td>Sound and Light Ch.16: 4 - 5</td>
<td>Beats Ch.17: 8</td>
</tr>
<tr>
<td>May 15</td>
<td>Standing Waves Ch.17: 1 - 4</td>
<td>Field of Point Charges Ch.23: 1 - 2</td>
</tr>
<tr>
<td>May 17</td>
<td>Wave Interference Ch.17: 5 - 7</td>
<td></td>
</tr>
<tr>
<td>May 22</td>
<td>Electric Charge & Force Ch.22: 1 - 4</td>
<td></td>
</tr>
<tr>
<td>May 24</td>
<td>The Field Model Ch.22: 5</td>
<td>Motion in Electric Fields Ch.23: 6 - 7</td>
</tr>
<tr>
<td>May 29</td>
<td>Continuous Distributions Ch.23: 3 - 4</td>
<td></td>
</tr>
<tr>
<td>May 31</td>
<td>The Capacitor Ch.23: 5</td>
<td></td>
</tr>
<tr>
<td>Jun. 05</td>
<td>Electric Potential Energy Ch.25: 1 - 3</td>
<td>Multiple Charges Ch.25: 6 - 7</td>
</tr>
<tr>
<td>Jun. 07</td>
<td>Electric Potential Ch.25: 4 - 5</td>
<td></td>
</tr>
<tr>
<td>Jun. 12</td>
<td>Potential & Field Ch.26: 1 - 4</td>
<td>Current & Resistance Ch.27: 1 - 5</td>
</tr>
<tr>
<td>Jun. 14</td>
<td>Capacitance & Dielectrics Ch.26: 5 - 7</td>
<td></td>
</tr>
<tr>
<td>Jun. 19</td>
<td>Reading Week</td>
<td>Reading Week</td>
</tr>
<tr>
<td>Jun. 21</td>
<td>Reading Week</td>
<td></td>
</tr>
<tr>
<td>Jun. 26</td>
<td>Circuit Laws Ch.28: 1 - 3</td>
<td>RC Circuits Ch.28: 9</td>
</tr>
<tr>
<td>Jun. 28</td>
<td>Resistor Circuits Ch.28: 4 - 8</td>
<td></td>
</tr>
<tr>
<td>Jul. 03</td>
<td>Magnetism Ch.29: 1 - 3</td>
<td>Magnetic Forces Ch.29: 7 - 10</td>
</tr>
<tr>
<td>Jul. 05</td>
<td>Magnetic Fields Ch.29: 4 - 6</td>
<td></td>
</tr>
<tr>
<td>Jul. 10</td>
<td>Induction Ch.30: 1 - 3</td>
<td>Electromagnetic Waves Ch.31: 1 - 6</td>
</tr>
<tr>
<td>Jul. 12</td>
<td>Lenz & Faraday Ch.30: 4 - 6</td>
<td></td>
</tr>
<tr>
<td>Jul. 17</td>
<td>Wave Optics Ch.33: 1 - 2</td>
<td>Einstein’s Postulate Ch.36: 1 - 5</td>
</tr>
<tr>
<td>Jul. 19</td>
<td>Diffraction Ch.33: 3 - 4</td>
<td>Lorentz Transformations Ch.36: 8</td>
</tr>
<tr>
<td>Jul. 24</td>
<td>Time & Length Ch.36: 6 - 7</td>
<td></td>
</tr>
<tr>
<td>Jul. 26</td>
<td>The Spacetime Interval Ch.36: 8</td>
<td></td>
</tr>
<tr>
<td>Jul. 31</td>
<td>Relativistic Momentum Ch.36: 9</td>
<td>Relativistic Energy Ch.36: 10</td>
</tr>
<tr>
<td>Aug. 02</td>
<td>Causality Ch.36: 9</td>
<td></td>
</tr>
</tbody>
</table>