UNIVERSITY of TORONTO at SCARBOROUGH Department of Physical & Environmental Sciences September 2012 Environmental Science EES C19

The world's oceans constitute more than 70 % of the earth's surface environments. This course will introduce students to the dynamics of ocean environments, ranging from deep ocean basins, to marginal seas, to the coastal ocean. The physical nature of ocean systems, their origins, and their importance in the global hydro-climatic system will be examined first; we will then focus on the primary physical mechanisms that control ocean dynamics. We will then examine the major oceanic circulations. The interactions that occur between the various fluid motions and the solid boundary, particularly around the edge of the continents will be a focus and a primary goal will be to examine the effects that the continent boundaries have on these fluid motions.

Instructor: Prof. Mathew Wells

Office: SW627B

Office hours Mondays 10-12 am - For all detailed questions please come to my office hours. I will only answers short emails from official UofT accounts, and anything that requires a detailed answer I'll ask you come to the course office hours.

The course will be organized around: (a) a 2-hour lecture each week; (b) a 1-2-hour tutorial/ practical class most weeks where the assignments will be discussed I will be posting lectures on blackboard usually the day before classes.

Lectures:

Tuesday 1300-1500 h Room: BV 363 Tutorials/Practicals/Seminars:

Tuesday 1500-1700 h Room: AA 205 or in computer labs

Course Grade:

Mid-Term Test 15 % Assignments (4) 40 % - note that last assignments will be penalized. Final Examination 45 %

TENTATIVE COURSE OUTLINE

September 3 Orientation

ENVIRONMENTAL CHALLENGES IN OCEANOGRAPHY Climate Change Overfishing and the Exclusive Economic zone (EEZ) Marine pollution and shipping

INTRODUCTION TO MARINE SYSTEMS (Physical)

The World Ocean Ocean Morphology Sea Water: Physical & Chemical Properties Halocline, Pycnocline, Thermocline

September 10 FORCES ON THE GLOBAL OCEAN 1: WIND

Surface Currents & Ekman Circulation Inertial Currents and Geostrophic Currents Oceanic Fronts Gyres, Rings, Eddies

ASSIGNMENT1 issued: Waves and Ocean Currents Computer lab tutorial on Java Ocean Atlas

September 17 FORCES ON THE GLOBAL OCEAN 2: WAVES

Wind Waves in Ocean Current Systems
Wave Generation & Propagation: Wind Waves & Swell
Wave Breaking & Decay, Wave Boundary Layers
Wave Guides & Kelvin Waves
Rossby Waves
Tsunamis

Sept 24 FORCES ON THE GLOBAL OCEAN 3: Thermo-Haline Circulation Hydrostatic Pressure & Horizontal Pressure Gradients

Hydrostatic Pressure & Horizontal Pressure Gradients Barotropic & Baroclinic States Coriolis Effect Geostrophic Currents & Gyres

October 1 FORCES ON THE GLOBAL OCEAN 4: OCEANIC TIDES

Equilibrium Theory of Tides Tidal Constituents & Dynamical Theory of Tides Amphidromic Systems, Tidal Currents Forcing of Real Tides & Tidal Asymmetries ASSIGNMENT 2 issued: TIDES

October 8 OCEAN CURRENT SYSTEMS I:

Atlantic Ocean North Atlantic Gyre The North Atlantic Oscillation Arctic and Southern Oceans Sea ice dynamics

October 15 – Reading week

October 22 OCEAN CURRENT SYSTEMS II:

Pacific Ocean
The Equatorial Current Systems
The Subtropical Gyres
The Equatorial Undercurrent
El Nino Southern Oscillation (ENSO)
Indian Ocean
Tropical Monsoon
In class midterm scheduled during tutorial.

October 29 OCEAN WATER MASSES

Heat Budget & Conservation of Salt Upper & Intermediate Water Masses Deep and Bottom Water Masses Ocean Mixing

ASSIGNMENT 3 issued: OCEAN CURRENTS

November 5 MARINE-FRESHWATER INTERFACE: ESTUARIES

Morphology & Estuary Types Estuarine Processes Environmental Problems

ASSIGNMENT 4 issued: Student Reports on Ocean Currents

November 12 DISTRIBUTION OF BIOLOGY Phytoplankton and Zooplankton, Red Tides

Oxygen and Nutrient distributions
Upwellings zones, CO2 uptake in ocean

November 19 15 minute Student Presentations on Ocean Currents

November 26 15 minute Student Presentations on Ocean Currents Course Review during tutorial

TEXTBOOK

Two texts from the UK Open University that will be used in this course as the textbook. You can buy them from Amazon but these two books are available online through the U of T library website

Ocean circulation -

http://simplelink.library.utoronto.ca/url.cfm/51807

Waves, tides, and shallow-water processes -

http://simplelink.library.utoronto.ca/url.cfm/51808

Other useful texts are "Regional Oceanography: an Introduction" by Matthias Tomczak and Stuart Godfrey. A PDF version of this book is available at http://gyre.umeoce.maine.edu/physicalocean/Tomczak/regoc/pdfversion.html

A more technical book is "Introduction to Physical Oceanography" by Robert Stewart.

A PDF version of this book is available at

http://oceanworld.tamu.edu/resources/ocng_textbook/PDF_files/book_pdf_files.html

and the online version is available at

http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html

We are also able to access the online "Encyclopedia of Ocean Sciences". The encyclopedia was published in 2001 and is the most up-to-date resource on oceanography

available. Here is a link to the encyclopedia

http://simplelink.library.utoronto.ca/url.cfm/282540